Stop worrying about tiny OOMs. Work towards #20449.
While going through these, I also changed the function signature in many
places where returning ThrowCompletionOr<T> is no longer necessary.
Instead of just calling JS::Value::to_string_without_side_effects() when
printing values to the console, have all the console clients use
the same JS::Print that the REPL does to print values.
This method leaves some things to be desired as far as OOM hardening
goes, however. We should be able to create a String in a way that
doesn't OOM on failure so hard.
Instead of creating a new global object and proxying everything through
it, we now evaluate console inputs inside a `with` environment.
This seems to match the behavior of WebKit and Gecko in my basic
testing, and removes the ConsoleGlobalObject which has been a source of
confusion and invalid downcasts.
The globals now live in a class called ConsoleGlobalObjectExtensions
(renamed from ConsoleGlobalObject since it's no longer a global object).
To make this possible, I had to add a way to override the initial
lexical environment when calling JS::Interpreter::run(). This is plumbed
via Web::HTML::ClassicScript::run().
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This holds the return value of the expression that was last entered into
the browser console. If that last expression returned an error of some
kind, `$_` will be `undefined`. This matches the behaviour in Firefox.
This allows us to expose extra functions and properties to the console,
such as `$0`, without them being available to website scripts.
`ConsoleEnvironmentSettingsObject` is basically a stub, since we require
an `EnvironmentSettingsObject` but it has abstract methods.
Print exceptions passed to `HTML::report_exception` in the JS console
Refactored `ExceptionReporter`: in order to report exception now
you need to pass the relevant realm in it. For passed `JS::Value`
we now create `JS::Error` object to print value as the error message.
This Intrinsics object hangs off of a new HostDefined struct that takes
the place of EnvironmentSettingsObject as the true [[HostDefined]] slot
on JS::Realm objects created by LibWeb.
This gets the intrinsics off of the GlobalObject, Window, similar to the
previous refactor of LibJS to move the intrinsics into the Realm's
[[Intrinics]] internal slot.
A side effect of this change is that we cannot fully initialize a Window
object until the [[HostDefined]] slot has been installed into the realm,
which happens with the creation of the WindowEnvironmentSettingsObject.
As such, any Window usage that has not been funned through a WindowESO
will not have any cached Web prototyped or constructors, and will not
have Window APIs available to javascript code. Currently this seems
limited to usage of Window in the CSS parser, but a subsequent commit
will clean those up to take Realm as well. However, this commit compiles
so let's cut it off here :^).
...and the other Console methods.
This lets you apply styling to a log message or any other text that
passes through the Console `Formatter` operation.
We store the CSS on the ConsoleClient instead of passing it along with
the rest of the message, since I couldn't figure out a nice way of
doing that, as Formatter has to return JS::Values. This way isn't nice,
and has a risk of forgetting to clear the style and having it apply to
subsequent messages, but it works.
This is only supported in the Browser for now. REPL support would
require parsing the CSS and figuring out the relevant ANSI codes. We
also don't filter this styling at all, so you can `position: absolute`
and `transform: translate(...)` all you want, which is less than
ideal.
This is a monster patch that turns all EventTargets into GC-allocated
PlatformObjects. Their C++ wrapper classes are removed, and the LibJS
garbage collector is now responsible for their lifetimes.
There's a fair amount of hacks and band-aids in this patch, and we'll
have a lot of cleanup to do after this.
- Prefer VM::current_realm() over GlobalObject::associated_realm()
- Prefer VM::heap() over GlobalObject::heap()
- Prefer Cell::vm() over Cell::global_object()
- Prefer Wrapper::vm() over Wrapper::global_object()
- Inline Realm::global_object() calls used to access intrinsics as they
will later perform a direct lookup without going through the global
object
Global object initialization is tightly coupled to realm creation, so
simply pass it to the function instead of relying on the non-standard
'associated realm' concept, which I'd like to remove later.
This works essentially the same way as regular Object::initialize() now.
Additionally this allows us to forward the realm to GlobalObject's
add_constructor() / initialize_constructor() helpers, so they set the
correct realm on the allocated constructor function object.
This is a continuation of the previous three commits.
Now that create() receives the allocating realm, we can simply forward
that to allocate(), which accounts for the majority of these changes.
Additionally, we can get rid of the realm_from_global_object() in one
place, with one more remaining in VM::throw_completion().
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Using a Vector<Value> is unsafe as GC cannot see the stored values.
This is then vended to outside users of ConsoleClient, e.g. LibWeb and
WebContent, which is then outside of LibJS's control.
An example issue is if the client stores it for later use and forgets
to visit the stored values, meaning they can be destroyed at any time.
We can save the client from this by vending a MarkedVector<Value> to
them.
It makes no sense to require passing a global object and doing a stack
space check in some cases where running out of stack is highly unlikely,
we can't recover from errors, and currently ignore the result anyway.
This is most commonly in constructors and when setting things up, rather
than regular function calls.
This fixes a crash of the browser when loading any page. LibWeb
immediately pops the 'running execution context' after creating an
interpreter, but it's needed to have a 'current realm' during
initialization of the ConsoleGlobalObject for NativeFunction::create()
to work.
Once this is done, we can immediately pop the execution context again.
The environment settings object is effectively the context a piece of
script is running under, for example, it contains the origin,
responsible document, realm, global object and event loop for the
current context. This effectively replaces ScriptExecutionContext, but
it cannot be removed in this commit as EventTarget still depends on it.
https://html.spec.whatwg.org/multipage/webappapis.html#environment-settings-object
Since VM::exception() no longer exists this is now useless. All of these
calls to clear_exception were just to clear the VM state after some
(potentially) failed evaluation and did not use the exception itself.
This also refactors interpreter creation to follow
InitializeHostDefinedRealm, but I couldn't fit it in the title :^)
This allows us to follow the spec much more closely rather than being
completely ad-hoc with just the parse node instead of having all the
surrounding data such as the realm of the parse node.
The interpreter creation refactor creates the global execution context
once and doesn't take it off the stack. This allows LibWeb to take the
global execution context and manually handle it, following the HTML
spec. The HTML spec calls this the "realm execution context" of the
environment settings object.
It also allows us to specify the globalThis type, as it can be
different from the global object type. For example, on the web, Window
global objects use a WindowProxy global this value to enforce the same
origin policy on operations like [[GetOwnProperty]].
Finally, it allows us to directly call Program::execute in perform_eval
and perform_shadow_realm_eval as this moves
global_declaration_instantiation into Interpreter::run
(ScriptEvaluation) as per the spec.
Note that this doesn't evalulate Source Text Modules yet or refactor
the bytecode interpreter, that's work for future us :^)
This patch was originally build by Luke for the environment settings
object change but was also needed for modules. So I (davidot) have
modified it with the new completion changes and setup for that.
Co-authored-by: davidot <davidot@serenityos.org>
Instead of making it a void function, checking for an exception, and
then receiving the relevant result via VM::last_value(), we can
consolidate all of this by using completions.
This allows us to remove more uses of VM::exception(), and all uses of
VM::last_value().
This implements:
- console.group()
- console.groupCollapsed()
- console.groupEnd()
In the Browser, we use `<details>` for the groups, which is not actually
implemented yet, so groups are always open.
In the REPL, groups are non-interactive, but still indent any output.
This looks weird since the console prompt and return values remain on
the far left, but this matches what Node does so it's probably fine. :^)
I expect `console.group()` is not used much outside of browsers.
The spec very kindly defines `Printer` as accepting
"Implementation-specific representations of printable things such as a
stack trace or group." for the `args`. We make use of that here by
passing the `Trace` itself to `Printer`, instead of having to produce a
representation of the stack trace in advance and then pass that to
`Printer`. That both avoids the hassle of tracking whether the data has
been html-encoded or not, and means clients don't have to implement the
whole `trace()` algorithm, but only the code needed to output the trace.
The `CountReset` log level is displayed as a warning, since the message
is always to warn that the counter doesn't exist. This is also in line
with the table at https://console.spec.whatwg.org/#loglevel-severity
This implements the Logger and Printer abstract operations defined in
the console spec, and stubs out the Formatter AO. These are then used
for the "output a categorized log message" functions.
We now set the realm (twice) on every console input. This can probably
be avoided if we use two executing contexts one for the website the
other for the console.
This achieves a similar behavior but is not really nice and not really
spec like.
The `WebContentConsoleClient` now keeps a list of console messages it
has received, so these are not lost if the ConsoleWidget has not been
initialized yet.
This change does break JS console output, but only until the next
commit. :^)
ConsoleGlobalObject is used as the global object when running javascript
from the Browser console. This lets us implement console-only functions
and variables (like `$0`) without exposing them to webpage content. It
passes other calls over to the usual WindowObject so any code that would
have worked in the webpage will still work in the console. :^)
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *