This is a continuation of the previous three commits.
Now that create() receives the allocating realm, we can simply forward
that to allocate(), which accounts for the majority of these changes.
Additionally, we can get rid of the realm_from_global_object() in one
place, with one more remaining in VM::throw_completion().
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.
Now we emit CreateVariable and SetVariable with the appropriate
initialization/environment modes, much closer to the spec.
This makes a whole lot of things like let/const variables, function
and variable hoisting and some other things work :^)
This commit removes all exception related code:
Remove VM::exception(), VM::throw_exception() etc. Any leftover
throw_exception calls are moved to throw_completion.
The one method left is clear_exception() which is now a no-op. Most of
these calls are just to clear whatever exception might have been thrown
when handling a Completion. So to have a cleaner commit this will be
removed in a next commit.
It also removes the actual Exception and TemporaryClearException classes
since these are no longer used.
In any spot where the exception was actually used an attempt was made to
preserve that behavior. However since it is no longer tracked by the VM
we cannot access exceptions which were thrown in previous calls.
There are two such cases which might have different behavior:
- In Web::DOM::Document::interpreter() the on_call_stack_emptied hook
used to print any uncaught exception but this is now no longer
possible as the VM does not store uncaught exceptions.
- In js the code used to be interruptable by throwing an exception on
the VM. This is no longer possible but was already somewhat fragile
before as you could happen to throw an exception just before a VERIFY.
Given we usually call objects Foo{Object,Constructor,Prototype} or
Foo{,Constructor,Prototype}, this name was an odd choice.
The new one matches the spec better, which calls it the "Generator
Prototype Object", so we simply omit the Object suffix as usual as it's
implied.
This is now as defined in the spec. However since we execute async
functions in bytecode by transforming it to a generator function it must
have a prototype for the GeneratorObject. We check whether it is an
async function and in that case use the hardcoded generator object
prototype. This also ensures that user code cannot override this
property thus preventing exposing internal implementation details.
The old name is the result of the perhaps somewhat confusingly named
abstract operation OrdinaryFunctionCreate(), which creates an "ordinary
object" (https://tc39.es/ecma262/#ordinary-object) in contrast to an
"exotic object" (https://tc39.es/ecma262/#exotic-object).
However, the term "Ordinary Function" is not used anywhere in the spec,
instead the created object is referred to as an "ECMAScript Function
Object" (https://tc39.es/ecma262/#sec-ecmascript-function-objects), so
let's call it that.
The "ordinary" vs. "exotic" distinction is important because there are
also "Built-in Function Objects", which can be either implemented as
ordinary ECMAScript function objects, or as exotic objects (our
NativeFunction).
More work needs to be done to move a lot of infrastructure to
ECMAScriptFunctionObject in order to make FunctionObject nothing more
than an interface for objects that implement [[Call]] and optionally
[[Construct]].
This removes all usages of the non-standard put helper method and
replaces all of it's usages with the specification required alternative
or with define_direct_property where appropriate.
To better follow the spec, we need to distinguish between the current
execution context's lexical environment and variable environment.
This patch moves us to having two record pointers, although both of
them point at the same environment records for now.
This patch makes the following name changes:
- ScopeObject => EnvironmentRecord
- LexicalEnvironment => DeclarativeEnvironmentRecord
- WithScope => ObjectEnvironmentRecord
This now matches the spec's OrdinaryObjectCreate() across the board:
instead of implicitly setting the created object's prototype to
%Object.prototype% and then in many cases setting it to a nullptr right
away, it now has an 'Object* prototype' parameter with _no default
value_. This makes the code easier to compare with the spec, very clear
in terms of what prototype is being used as well as avoiding unnecessary
shape transitions.
Also fixes a couple of cases were we weren't setting the correct
prototype.
There's no reason to assume that the object would not be empty (as in
having own properties), so let's follow our existing pattern of
Type::create(...) and simply call it 'create'.
As mentioned on Discord earlier, we'll add these to all new functions
going forward - this is the backfill. Reasons:
- It makes you look at the spec, implementing based on MDN or V8
behavior is a no-go
- It makes finding the various functions that are non-compliant easier,
in the future everything should either have such a comment or, if it's
not from the spec at all, a comment explaining why that is the case
- It makes it easier to check whether a certain abstract operation is
implemented in LibJS, not all of them use the same name as the spec.
E.g. RejectPromise() is Promise::reject()
- It makes it easier to reason about vm.arguments(), e.g. when the
function has a rest parameter
- It makes it easier to see whether a certain function is from a
proposal or Annex B
Also:
- Add arguments to all functions and abstract operations that already
had a comment
- Fix some outdated section numbers
- Replace some ecma-international.org URLs with tc39.es