We had previous implemented some plumbing for file input elements in
commit 636602a54e.
This implements the return path for chromes to inform WebContent of the
file(s) the user selected. This patch includes a dummy implementation
for headless-browser to enable testing.
Along with putting functions in the URL namespace into a DOMURL
namespace.
This is done as LibWeb is in an awkward situation where it needs
two URL classes. AK::URL is the general purpose URL class which
is all that is needed in 95% of cases. URL in the Web namespace
is needed predominantly for interfacing with the javascript
interfaces.
Because of two URLs in the same namespace, AK::URL has had to be
used throughout LibWeb. If we move AK::URL into a URL namespace,
this becomes more painful - where ::URL::URL is required to
specify the constructor (and something like
::URL::create_with_url_or_path in other places).
To fix this problem - rename the class in LibWeb implementing the
URL IDL interface to DOMURL, along with moving the other Web URL
related classes into this DOMURL folder.
One could argue that this name also makes the situation a little
more clear in LibWeb for why these two URL classes need be used
in the first place.
This attribute has some compatbility issues...
- The spec says it should be an SVGAnimatedRect which contains
a DOMRect and a DOMReadOnlyRect.
- Blink gives you an SVGAnimatedRect with 2x SVGRect
- Gecko gives you an SVGAnimatedRect with 2x SVGRect? (nullable)
I ended up with something similar to Gecko, an SVGAnimatedRect
with 2x DOMRect? (nullable)
With this fixed, we can now load https://polar.sh/ :^)
Instead of spawning these processes from the WebContent process, we now
create them in the Browser chrome.
Part 1/N of "all processes are owned by the chrome".
We have two known PlatformObjects that need to implement some of the
behavior of LegacyPlatformObjects to date: Window, and HTMLFormElement.
To make this not require double (or virtual) inheritance of
PlatformObject, move the behavior of LegacyPlatformObject into
PlatformObject. The selection of LegacyPlatformObject behavior is done
with a new bitfield of feature flags instead of a dozen virtual
functions that return bool. This change simplifies every class involved
in the diff with the notable exception of Window, which now needs some
ugly const casts to implement named property access.
This aligns Workers and Window and MessagePorts to all use the same
mechanism for transferring serialized messages across realms.
It also allows transferring more message ports into a worker.
Re-enable the Worker-echo test, as none of the MessagePort tests have
themselves been flaky, and those are now using the same underlying
implementation.
These wrappers will make it much easier to do various operations on the
different ArrayBuffer-related classes in LibWeb compared to the current
solution, which is to just accept a Handle<Object> everywhere (and use
"any" in the *.idl files).
Co-Authored-By: Matthew Olsson <mattco@serenityos.org>
This is an internal object that must be explicitly enabled by the chrome
before it is added to the Window. The Inspector object will be used by a
special WebView that will replace all chrome-specific inspector windows.
The IDL defines methods that this WebView will need to inform the chrome
of various events, such as the user clicking a DOM node.
This modification introduces a new layer to the painting process. The
stacking context traversal no longer immediately calls the
Gfx::Painter methods. Instead, it writes serialized painting commands
into newly introduced RecordingPainter. Created list of commands is
executed later to produce resulting bitmap.
Producing painting command list will make it easier to add new
optimizations:
- It's simpler to check if the painting result is not visible in the
viewport at the command level rather than during stacking context
traversal.
- Run painting in a separate thread. The painting thread can process
serialized painting commands, while the main thread can work on the
next paintable tree and safely invalidate the previous one.
- As we consider GPU-accelerated painting support, it would be easier
to back each painting command rather than constructing an alternative
for the entire Gfx::Painter API.
Window.h is a rather heavy file, so let's try not to include it in
header files when we can!
Element.h now also includes LibWeb/Bindings/Intrinsics.h, but that's
just out of my laziness. Most if not all objects call
`Bindings::ensure_web_prototype<>()` anyway, so I don't think we would
gain much by sticking the header to source files instead.
And implement WindowProperties, the "named properties object" for Window
according to the spec.
This involves moving an AO out of LegacyPlatformObject and into a common
place that the WindowProperties class can access.
This doesn't implement the AOs on Window that actually name lookup for
the unenumerable named properties on the window yet, just the
scaffolding.
The `to_string()` for this is modified a little from the original,
because we have to calculate what the layer-count is then, instead of
having it already calculated.