This loosens the connection to the AST interpreter and will allow us to
generate SourceRanges for the Bytecode interpreter in the future as well
Moves UnrealizedSourceRanges from TracebackFrame to the JS namespace for
this
These passes have not been shown to actually optimize any JS, and tests
have become very flaky with optimizations enabled. Until some measurable
benefit is shown, remove the optimization passes to reduce overhead of
maintaining bytecode operations and to reduce CI churn. The framework
for optimizations will live on in git history, and can be restored once
proven useful.
Previously, the usage of local variables was limited for all function
declarations. This change relaxes the restriction and only prohibits
locals for hoistable annexB declarations.
Since AST interpreter switches to bytecode to execute generator
functions, arguments stored in local variables always need to be
initialized for such functions.
Using local variables to store function parameters makes Kraken tests
run 7-10% faster.
For now this optimization is limited to only be applied if:
- Parameter does not use destructuring assignment
- None of the function params has default value
- There is no access to "arguments" variable inside function body
- Update ECMAScriptFunctionObject::function_declaration_instantiation
to initialize local variables
- Introduce GetLocal, SetLocal, TypeofLocal that will be used to
operate on local variables.
- Update bytecode generator to emit instructions for local variables
Now ExecutionContext has vector of values that will represent values
of local variables.
This vector is initialized in ECMAScriptFunctionObject::internal_call()
or ECMAScriptFunctionObject::internal_const() using number of local
variables provided to ECMAScriptFunctionObject by the parser.
Saving vector of local variables names in ECMAScriptFunctionObject
will allow to get a name by index in case message of ReferenceError
needs to contain a variable name.
If an exception is thrown by FunctionDeclarationInstantiation for an
async or async-generator function, we still need to return a promise.
We can't just throw the exception.
81 new passes on test262. :^)
The JS::VM now owns the one Bytecode::Interpreter. We no longer have
multiple bytecode interpreters, and there is no concept of a "current"
bytecode interpreter.
If you ask for VM::bytecode_interpreter_if_exists(), it will return null
if we're not running the program in "bytecode enabled" mode.
If you ask for VM::bytecode_interpreter(), it will return a bytecode
interpreter in all modes. This is used for situations where even the AST
interpreter switches to bytecode mode (generators, etc.)
Instead of trying to implement this AO in bytecode, we can just let it
be a C++ thing. Once we implement fast uncaptured locals, we won't even
be calling it super often.
Some of these are allocated upon initialization of the intrinsics, and
some lazily, but in neither case the getters actually return a nullptr.
This saves us a whole bunch of pointer dereferences (as NonnullGCPtr has
an `operator T&()`), and also has the interesting side effect of forcing
us to explicitly use the FunctionObject& overload of call(), as passing
a NonnullGCPtr is ambigous - it could implicitly be turned into a Value
_or_ a FunctionObject& (so we have to dereference manually).
Comes with the usual benefit of saving some space on the stack, as well
as making a situation where both or neither Optionals hold a value
impossible.
The various unwrapping additions are required as we can no longer
construct a ThrowCompletionOr<T> from an Optional<T> - rightfully so.
This includes an Error::create overload to create an Error from a UTF-8
StringView. If creating a String from that view fails, the factory will
return an OOM InternalError instead. VM::throw_completion can also make
use of this overload via its perfect forwarding.
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
In this patch only top level and not the more complicated for loop using
statements are supported. Also, as noted in the latest meeting of tc39
async parts of the spec are not stage 3 thus not included.
DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.
After setting up all the bindings in function_declaration_instantiation,
we now ask DeclarativeEnvironment to do a shrink_to_fit() on its vector
of bindings.
This ends up saving 5.6 MiB on twitter.com/awesomekling :^)
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
This makes more sense as an Object method rather than living within the
VM class for no good reason. Most of the other 7.3.xx AOs already work
the same way.
Also add spec comments while we're here.