
These passes have not been shown to actually optimize any JS, and tests have become very flaky with optimizations enabled. Until some measurable benefit is shown, remove the optimization passes to reduce overhead of maintaining bytecode operations and to reduce CI churn. The framework for optimizations will live on in git history, and can be restored once proven useful.
1193 lines
60 KiB
C++
1193 lines
60 KiB
C++
/*
|
|
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
|
|
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
|
|
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2023, Shannon Booth <shannon@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/Function.h>
|
|
#include <LibJS/AST.h>
|
|
#include <LibJS/Bytecode/BasicBlock.h>
|
|
#include <LibJS/Bytecode/Generator.h>
|
|
#include <LibJS/Bytecode/Interpreter.h>
|
|
#include <LibJS/Interpreter.h>
|
|
#include <LibJS/Runtime/AbstractOperations.h>
|
|
#include <LibJS/Runtime/Array.h>
|
|
#include <LibJS/Runtime/AsyncFunctionDriverWrapper.h>
|
|
#include <LibJS/Runtime/AsyncGenerator.h>
|
|
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
|
|
#include <LibJS/Runtime/Error.h>
|
|
#include <LibJS/Runtime/ExecutionContext.h>
|
|
#include <LibJS/Runtime/FunctionEnvironment.h>
|
|
#include <LibJS/Runtime/GeneratorObject.h>
|
|
#include <LibJS/Runtime/GlobalObject.h>
|
|
#include <LibJS/Runtime/NativeFunction.h>
|
|
#include <LibJS/Runtime/PromiseCapability.h>
|
|
#include <LibJS/Runtime/PromiseConstructor.h>
|
|
#include <LibJS/Runtime/Value.h>
|
|
|
|
namespace JS {
|
|
|
|
NonnullGCPtr<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create(Realm& realm, DeprecatedFlyString name, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> parameters, i32 m_function_length, Vector<DeprecatedFlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
|
|
{
|
|
Object* prototype = nullptr;
|
|
switch (kind) {
|
|
case FunctionKind::Normal:
|
|
prototype = realm.intrinsics().function_prototype();
|
|
break;
|
|
case FunctionKind::Generator:
|
|
prototype = realm.intrinsics().generator_function_prototype();
|
|
break;
|
|
case FunctionKind::Async:
|
|
prototype = realm.intrinsics().async_function_prototype();
|
|
break;
|
|
case FunctionKind::AsyncGenerator:
|
|
prototype = realm.intrinsics().async_generator_function_prototype();
|
|
break;
|
|
}
|
|
return realm.heap().allocate<ECMAScriptFunctionObject>(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, move(local_variables_names), parent_environment, private_environment, *prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name)).release_allocated_value_but_fixme_should_propagate_errors();
|
|
}
|
|
|
|
NonnullGCPtr<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create(Realm& realm, DeprecatedFlyString name, Object& prototype, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> parameters, i32 m_function_length, Vector<DeprecatedFlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
|
|
{
|
|
return realm.heap().allocate<ECMAScriptFunctionObject>(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, move(local_variables_names), parent_environment, private_environment, prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name)).release_allocated_value_but_fixme_should_propagate_errors();
|
|
}
|
|
|
|
ECMAScriptFunctionObject::ECMAScriptFunctionObject(DeprecatedFlyString name, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> formal_parameters, i32 function_length, Vector<DeprecatedFlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, Object& prototype, FunctionKind kind, bool strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
|
|
: FunctionObject(prototype)
|
|
, m_name(move(name))
|
|
, m_function_length(function_length)
|
|
, m_local_variables_names(move(local_variables_names))
|
|
, m_environment(parent_environment)
|
|
, m_private_environment(private_environment)
|
|
, m_formal_parameters(move(formal_parameters))
|
|
, m_ecmascript_code(ecmascript_code)
|
|
, m_realm(&prototype.shape().realm())
|
|
, m_source_text(move(source_text))
|
|
, m_class_field_initializer_name(move(class_field_initializer_name))
|
|
, m_strict(strict)
|
|
, m_might_need_arguments_object(might_need_arguments_object)
|
|
, m_contains_direct_call_to_eval(contains_direct_call_to_eval)
|
|
, m_is_arrow_function(is_arrow_function)
|
|
, m_kind(kind)
|
|
{
|
|
// NOTE: This logic is from OrdinaryFunctionCreate, https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
|
|
|
|
// 9. If thisMode is lexical-this, set F.[[ThisMode]] to lexical.
|
|
if (m_is_arrow_function)
|
|
m_this_mode = ThisMode::Lexical;
|
|
// 10. Else if Strict is true, set F.[[ThisMode]] to strict.
|
|
else if (m_strict)
|
|
m_this_mode = ThisMode::Strict;
|
|
else
|
|
// 11. Else, set F.[[ThisMode]] to global.
|
|
m_this_mode = ThisMode::Global;
|
|
|
|
// 15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
|
|
m_script_or_module = vm().get_active_script_or_module();
|
|
|
|
// 15.1.3 Static Semantics: IsSimpleParameterList, https://tc39.es/ecma262/#sec-static-semantics-issimpleparameterlist
|
|
m_has_simple_parameter_list = all_of(m_formal_parameters, [&](auto& parameter) {
|
|
if (parameter.is_rest)
|
|
return false;
|
|
if (parameter.default_value)
|
|
return false;
|
|
if (!parameter.binding.template has<NonnullRefPtr<Identifier const>>())
|
|
return false;
|
|
return true;
|
|
});
|
|
}
|
|
|
|
ThrowCompletionOr<void> ECMAScriptFunctionObject::initialize(Realm& realm)
|
|
{
|
|
auto& vm = this->vm();
|
|
MUST_OR_THROW_OOM(Base::initialize(realm));
|
|
// Note: The ordering of these properties must be: length, name, prototype which is the order
|
|
// they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances .
|
|
// This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
|
|
// which must give the properties in chronological order which in this case is the order they
|
|
// are defined in the spec.
|
|
|
|
MUST(define_property_or_throw(vm.names.length, { .value = Value(m_function_length), .writable = false, .enumerable = false, .configurable = true }));
|
|
MUST(define_property_or_throw(vm.names.name, { .value = PrimitiveString::create(vm, m_name.is_null() ? "" : m_name), .writable = false, .enumerable = false, .configurable = true }));
|
|
|
|
if (!m_is_arrow_function) {
|
|
Object* prototype = nullptr;
|
|
switch (m_kind) {
|
|
case FunctionKind::Normal:
|
|
prototype = MUST_OR_THROW_OOM(vm.heap().allocate<Object>(realm, realm.intrinsics().new_ordinary_function_prototype_object_shape()));
|
|
MUST(prototype->define_property_or_throw(vm.names.constructor, { .value = this, .writable = true, .enumerable = false, .configurable = true }));
|
|
break;
|
|
case FunctionKind::Generator:
|
|
// prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png)
|
|
prototype = Object::create(realm, realm.intrinsics().generator_function_prototype_prototype());
|
|
break;
|
|
case FunctionKind::Async:
|
|
break;
|
|
case FunctionKind::AsyncGenerator:
|
|
prototype = Object::create(realm, realm.intrinsics().async_generator_function_prototype_prototype());
|
|
break;
|
|
}
|
|
// 27.7.4 AsyncFunction Instances, https://tc39.es/ecma262/#sec-async-function-instances
|
|
// AsyncFunction instances do not have a prototype property as they are not constructible.
|
|
if (m_kind != FunctionKind::Async)
|
|
define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
// 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist
|
|
ThrowCompletionOr<Value> ECMAScriptFunctionObject::internal_call(Value this_argument, MarkedVector<Value> arguments_list)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let callerContext be the running execution context.
|
|
// NOTE: No-op, kept by the VM in its execution context stack.
|
|
|
|
ExecutionContext callee_context(heap());
|
|
|
|
callee_context.local_variables.resize(m_local_variables_names.size());
|
|
|
|
// Non-standard
|
|
callee_context.arguments.extend(move(arguments_list));
|
|
if (auto* interpreter = vm.interpreter_if_exists())
|
|
callee_context.current_node = interpreter->current_node();
|
|
|
|
// 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined).
|
|
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
|
|
TRY(prepare_for_ordinary_call(callee_context, nullptr));
|
|
|
|
// 3. Assert: calleeContext is now the running execution context.
|
|
VERIFY(&vm.running_execution_context() == &callee_context);
|
|
|
|
// 4. If F.[[IsClassConstructor]] is true, then
|
|
if (m_is_class_constructor) {
|
|
// a. Let error be a newly created TypeError object.
|
|
// b. NOTE: error is created in calleeContext with F's associated Realm Record.
|
|
auto throw_completion = vm.throw_completion<TypeError>(ErrorType::ClassConstructorWithoutNew, m_name);
|
|
|
|
// c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// d. Return ThrowCompletion(error).
|
|
return throw_completion;
|
|
}
|
|
|
|
// 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
|
|
ordinary_call_bind_this(callee_context, this_argument);
|
|
|
|
// 6. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
|
|
auto result = ordinary_call_evaluate_body();
|
|
|
|
// 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// 8. If result.[[Type]] is return, return result.[[Value]].
|
|
if (result.type() == Completion::Type::Return)
|
|
return *result.value();
|
|
|
|
// 9. ReturnIfAbrupt(result).
|
|
if (result.is_abrupt()) {
|
|
VERIFY(result.is_error());
|
|
return result;
|
|
}
|
|
|
|
// 10. Return undefined.
|
|
return js_undefined();
|
|
}
|
|
|
|
// 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget
|
|
ThrowCompletionOr<NonnullGCPtr<Object>> ECMAScriptFunctionObject::internal_construct(MarkedVector<Value> arguments_list, FunctionObject& new_target)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let callerContext be the running execution context.
|
|
// NOTE: No-op, kept by the VM in its execution context stack.
|
|
|
|
// 2. Let kind be F.[[ConstructorKind]].
|
|
auto kind = m_constructor_kind;
|
|
|
|
GCPtr<Object> this_argument;
|
|
|
|
// 3. If kind is base, then
|
|
if (kind == ConstructorKind::Base) {
|
|
// a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%").
|
|
this_argument = TRY(ordinary_create_from_constructor<Object>(vm, new_target, &Intrinsics::object_prototype, ConstructWithPrototypeTag::Tag));
|
|
}
|
|
|
|
ExecutionContext callee_context(heap());
|
|
|
|
callee_context.local_variables.resize(m_local_variables_names.size());
|
|
|
|
// Non-standard
|
|
callee_context.arguments.extend(move(arguments_list));
|
|
if (auto* interpreter = vm.interpreter_if_exists())
|
|
callee_context.current_node = interpreter->current_node();
|
|
|
|
// 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).
|
|
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
|
|
TRY(prepare_for_ordinary_call(callee_context, &new_target));
|
|
|
|
// 5. Assert: calleeContext is now the running execution context.
|
|
VERIFY(&vm.running_execution_context() == &callee_context);
|
|
|
|
// 6. If kind is base, then
|
|
if (kind == ConstructorKind::Base) {
|
|
// a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
|
|
ordinary_call_bind_this(callee_context, this_argument);
|
|
|
|
// b. Let initializeResult be Completion(InitializeInstanceElements(thisArgument, F)).
|
|
auto initialize_result = this_argument->initialize_instance_elements(*this);
|
|
|
|
// c. If initializeResult is an abrupt completion, then
|
|
if (initialize_result.is_throw_completion()) {
|
|
// i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// ii. Return ? initializeResult.
|
|
return initialize_result.throw_completion();
|
|
}
|
|
}
|
|
|
|
// 7. Let constructorEnv be the LexicalEnvironment of calleeContext.
|
|
auto constructor_env = callee_context.lexical_environment;
|
|
|
|
// 8. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
|
|
auto result = ordinary_call_evaluate_body();
|
|
|
|
// 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// 10. If result.[[Type]] is return, then
|
|
if (result.type() == Completion::Type::Return) {
|
|
// FIXME: This is leftover from untangling the call/construct mess - doesn't belong here in any way, but removing it breaks derived classes.
|
|
// Likely fixed by making ClassDefinitionEvaluation fully spec compliant.
|
|
if (kind == ConstructorKind::Derived && result.value()->is_object()) {
|
|
auto prototype = TRY(new_target.get(vm.names.prototype));
|
|
if (prototype.is_object())
|
|
TRY(result.value()->as_object().internal_set_prototype_of(&prototype.as_object()));
|
|
}
|
|
// EOF (End of FIXME)
|
|
|
|
// a. If Type(result.[[Value]]) is Object, return result.[[Value]].
|
|
if (result.value()->is_object())
|
|
return result.value()->as_object();
|
|
|
|
// b. If kind is base, return thisArgument.
|
|
if (kind == ConstructorKind::Base)
|
|
return *this_argument;
|
|
|
|
// c. If result.[[Value]] is not undefined, throw a TypeError exception.
|
|
if (!result.value()->is_undefined())
|
|
return vm.throw_completion<TypeError>(ErrorType::DerivedConstructorReturningInvalidValue);
|
|
}
|
|
// 11. Else, ReturnIfAbrupt(result).
|
|
else if (result.is_abrupt()) {
|
|
VERIFY(result.is_error());
|
|
return result;
|
|
}
|
|
|
|
// 12. Let thisBinding be ? constructorEnv.GetThisBinding().
|
|
auto this_binding = TRY(constructor_env->get_this_binding(vm));
|
|
|
|
// 13. Assert: Type(thisBinding) is Object.
|
|
VERIFY(this_binding.is_object());
|
|
|
|
// 14. Return thisBinding.
|
|
return this_binding.as_object();
|
|
}
|
|
|
|
void ECMAScriptFunctionObject::visit_edges(Visitor& visitor)
|
|
{
|
|
Base::visit_edges(visitor);
|
|
visitor.visit(m_environment);
|
|
visitor.visit(m_private_environment);
|
|
visitor.visit(m_realm);
|
|
visitor.visit(m_home_object);
|
|
|
|
for (auto& field : m_fields) {
|
|
if (auto* property_key_ptr = field.name.get_pointer<PropertyKey>(); property_key_ptr && property_key_ptr->is_symbol())
|
|
visitor.visit(property_key_ptr->as_symbol());
|
|
}
|
|
|
|
m_script_or_module.visit(
|
|
[](Empty) {},
|
|
[&](auto& script_or_module) {
|
|
visitor.visit(script_or_module.ptr());
|
|
});
|
|
}
|
|
|
|
// 10.2.7 MakeMethod ( F, homeObject ), https://tc39.es/ecma262/#sec-makemethod
|
|
void ECMAScriptFunctionObject::make_method(Object& home_object)
|
|
{
|
|
// 1. Set F.[[HomeObject]] to homeObject.
|
|
m_home_object = &home_object;
|
|
|
|
// 2. Return unused.
|
|
}
|
|
|
|
// 10.2.11 FunctionDeclarationInstantiation ( func, argumentsList ), https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
|
|
ThrowCompletionOr<void> ECMAScriptFunctionObject::function_declaration_instantiation(Interpreter* interpreter)
|
|
{
|
|
auto& vm = this->vm();
|
|
auto& realm = *vm.current_realm();
|
|
|
|
// 1. Let calleeContext be the running execution context.
|
|
auto& callee_context = vm.running_execution_context();
|
|
|
|
// 2. Let code be func.[[ECMAScriptCode]].
|
|
ScopeNode const* scope_body = nullptr;
|
|
if (is<ScopeNode>(*m_ecmascript_code))
|
|
scope_body = static_cast<ScopeNode const*>(m_ecmascript_code.ptr());
|
|
|
|
// 3. Let strict be func.[[Strict]].
|
|
bool const strict = is_strict_mode();
|
|
|
|
bool has_parameter_expressions = false;
|
|
|
|
// 4. Let formals be func.[[FormalParameters]].
|
|
auto const& formals = m_formal_parameters;
|
|
|
|
// FIXME: Maybe compute has duplicates at parse time? (We need to anyway since it's an error in some cases)
|
|
// 5. Let parameterNames be the BoundNames of formals.
|
|
// 6. If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
|
|
bool has_duplicates = false;
|
|
HashTable<DeprecatedFlyString> parameter_names;
|
|
|
|
// NOTE: This loop performs step 5, 6, and 8.
|
|
for (auto const& parameter : formals) {
|
|
if (parameter.default_value)
|
|
has_parameter_expressions = true;
|
|
|
|
parameter.binding.visit(
|
|
[&](Identifier const& identifier) {
|
|
if (parameter_names.set(identifier.string()) != AK::HashSetResult::InsertedNewEntry)
|
|
has_duplicates = true;
|
|
},
|
|
[&](NonnullRefPtr<BindingPattern const> const& pattern) {
|
|
if (pattern->contains_expression())
|
|
has_parameter_expressions = true;
|
|
|
|
// NOTE: Nothing in the callback throws an exception.
|
|
MUST(pattern->for_each_bound_identifier([&](auto& identifier) {
|
|
if (parameter_names.set(identifier.string()) != AK::HashSetResult::InsertedNewEntry)
|
|
has_duplicates = true;
|
|
}));
|
|
});
|
|
}
|
|
|
|
// 7. Let simpleParameterList be IsSimpleParameterList of formals.
|
|
bool const simple_parameter_list = has_simple_parameter_list();
|
|
|
|
// 8. Let hasParameterExpressions be ContainsExpression of formals.
|
|
// NOTE: Already set above.
|
|
|
|
// 9. Let varNames be the VarDeclaredNames of code.
|
|
// 10. Let varDeclarations be the VarScopedDeclarations of code.
|
|
// 11. Let lexicalNames be the LexicallyDeclaredNames of code.
|
|
// NOTE: Not needed as we use iteration helpers for this instead.
|
|
|
|
// 12. Let functionNames be a new empty List.
|
|
HashTable<DeprecatedFlyString> function_names;
|
|
|
|
// 13. Let functionsToInitialize be a new empty List.
|
|
Vector<FunctionDeclaration const&> functions_to_initialize;
|
|
|
|
// 14. For each element d of varDeclarations, in reverse List order, do
|
|
// a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then
|
|
// i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an AsyncGeneratorDeclaration.
|
|
// ii. Let fn be the sole element of the BoundNames of d.
|
|
// iii. If functionNames does not contain fn, then
|
|
// 1. Insert fn as the first element of functionNames.
|
|
// 2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
|
|
// 3. Insert d as the first element of functionsToInitialize.
|
|
// NOTE: This block is done in step 18 below.
|
|
|
|
// 15. Let argumentsObjectNeeded be true.
|
|
auto arguments_object_needed = m_might_need_arguments_object;
|
|
|
|
// 16. If func.[[ThisMode]] is lexical, then
|
|
if (this_mode() == ThisMode::Lexical) {
|
|
// a. NOTE: Arrow functions never have an arguments object.
|
|
// b. Set argumentsObjectNeeded to false.
|
|
arguments_object_needed = false;
|
|
}
|
|
// 17. Else if parameterNames contains "arguments", then
|
|
else if (parameter_names.contains(vm.names.arguments.as_string())) {
|
|
// a. Set argumentsObjectNeeded to false.
|
|
arguments_object_needed = false;
|
|
}
|
|
|
|
// 18. Else if hasParameterExpressions is false, then
|
|
// a. If functionNames contains "arguments" or lexicalNames contains "arguments", then
|
|
// i. Set argumentsObjectNeeded to false.
|
|
// NOTE: The block below is a combination of step 14 and step 18.
|
|
if (scope_body) {
|
|
// NOTE: Nothing in the callback throws an exception.
|
|
MUST(scope_body->for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
|
|
if (function_names.set(function.name()) == AK::HashSetResult::InsertedNewEntry)
|
|
functions_to_initialize.append(function);
|
|
}));
|
|
|
|
auto const& arguments_name = vm.names.arguments.as_string();
|
|
|
|
if (!has_parameter_expressions && function_names.contains(arguments_name))
|
|
arguments_object_needed = false;
|
|
|
|
if (!has_parameter_expressions && arguments_object_needed) {
|
|
// NOTE: Nothing in the callback throws an exception.
|
|
MUST(scope_body->for_each_lexically_declared_identifier([&](auto const& identifier) {
|
|
if (identifier.string() == arguments_name)
|
|
arguments_object_needed = false;
|
|
}));
|
|
}
|
|
} else {
|
|
arguments_object_needed = false;
|
|
}
|
|
|
|
GCPtr<Environment> environment;
|
|
|
|
// 19. If strict is true or hasParameterExpressions is false, then
|
|
if (strict || !has_parameter_expressions) {
|
|
// a. NOTE: Only a single Environment Record is needed for the parameters, since calls to eval in strict mode code cannot create new bindings which are visible outside of the eval.
|
|
// b. Let env be the LexicalEnvironment of calleeContext.
|
|
environment = callee_context.lexical_environment;
|
|
}
|
|
// 20. Else,
|
|
else {
|
|
// a. NOTE: A separate Environment Record is needed to ensure that bindings created by direct eval calls in the formal parameter list are outside the environment where parameters are declared.
|
|
|
|
// b. Let calleeEnv be the LexicalEnvironment of calleeContext.
|
|
auto callee_env = callee_context.lexical_environment;
|
|
|
|
// c. Let env be NewDeclarativeEnvironment(calleeEnv).
|
|
environment = new_declarative_environment(*callee_env);
|
|
|
|
// d. Assert: The VariableEnvironment of calleeContext is calleeEnv.
|
|
VERIFY(callee_context.variable_environment == callee_context.lexical_environment);
|
|
|
|
// e. Set the LexicalEnvironment of calleeContext to env.
|
|
callee_context.lexical_environment = environment;
|
|
}
|
|
|
|
// 21. For each String paramName of parameterNames, do
|
|
for (auto const& parameter_name : parameter_names) {
|
|
// a. Let alreadyDeclared be ! env.HasBinding(paramName).
|
|
auto already_declared = MUST(environment->has_binding(parameter_name));
|
|
|
|
// b. NOTE: Early errors ensure that duplicate parameter names can only occur in non-strict functions that do not have parameter default values or rest parameters.
|
|
|
|
// c. If alreadyDeclared is false, then
|
|
if (!already_declared) {
|
|
// i. Perform ! env.CreateMutableBinding(paramName, false).
|
|
MUST(environment->create_mutable_binding(vm, parameter_name, false));
|
|
|
|
// ii. If hasDuplicates is true, then
|
|
if (has_duplicates) {
|
|
// 1. Perform ! env.InitializeBinding(paramName, undefined).
|
|
MUST(environment->initialize_binding(vm, parameter_name, js_undefined(), Environment::InitializeBindingHint::Normal));
|
|
}
|
|
}
|
|
}
|
|
|
|
// 22. If argumentsObjectNeeded is true, then
|
|
if (arguments_object_needed) {
|
|
Object* arguments_object;
|
|
|
|
// a. If strict is true or simpleParameterList is false, then
|
|
if (strict || !simple_parameter_list) {
|
|
// i. Let ao be CreateUnmappedArgumentsObject(argumentsList).
|
|
arguments_object = create_unmapped_arguments_object(vm, vm.running_execution_context().arguments);
|
|
}
|
|
// b. Else,
|
|
else {
|
|
// i. NOTE: A mapped argument object is only provided for non-strict functions that don't have a rest parameter, any parameter default value initializers, or any destructured parameters.
|
|
|
|
// ii. Let ao be CreateMappedArgumentsObject(func, formals, argumentsList, env).
|
|
arguments_object = create_mapped_arguments_object(vm, *this, formal_parameters(), vm.running_execution_context().arguments, *environment);
|
|
}
|
|
|
|
// c. If strict is true, then
|
|
if (strict) {
|
|
// i. Perform ! env.CreateImmutableBinding("arguments", false).
|
|
MUST(environment->create_immutable_binding(vm, vm.names.arguments.as_string(), false));
|
|
|
|
// ii. NOTE: In strict mode code early errors prevent attempting to assign to this binding, so its mutability is not observable.
|
|
}
|
|
// b. Else,
|
|
else {
|
|
// i. Perform ! env.CreateMutableBinding("arguments", false).
|
|
MUST(environment->create_mutable_binding(vm, vm.names.arguments.as_string(), false));
|
|
}
|
|
|
|
// c. Perform ! env.InitializeBinding("arguments", ao).
|
|
MUST(environment->initialize_binding(vm, vm.names.arguments.as_string(), arguments_object, Environment::InitializeBindingHint::Normal));
|
|
|
|
// f. Let parameterBindings be the list-concatenation of parameterNames and « "arguments" ».
|
|
parameter_names.set(vm.names.arguments.as_string());
|
|
}
|
|
// 23. Else,
|
|
else {
|
|
// a. Let parameterBindings be parameterNames.
|
|
}
|
|
|
|
// NOTE: We now treat parameterBindings as parameterNames.
|
|
|
|
// 24. Let iteratorRecord be CreateListIteratorRecord(argumentsList).
|
|
// 25. If hasDuplicates is true, then
|
|
// a. Perform ? IteratorBindingInitialization of formals with arguments iteratorRecord and undefined.
|
|
// 26. Else,
|
|
// a. Perform ? IteratorBindingInitialization of formals with arguments iteratorRecord and env.
|
|
// NOTE: The spec makes an iterator here to do IteratorBindingInitialization but we just do it manually
|
|
auto& execution_context_arguments = vm.running_execution_context().arguments;
|
|
|
|
size_t default_parameter_index = 0;
|
|
for (size_t i = 0; i < m_formal_parameters.size(); ++i) {
|
|
auto& parameter = m_formal_parameters[i];
|
|
if (parameter.default_value)
|
|
++default_parameter_index;
|
|
|
|
TRY(parameter.binding.visit(
|
|
[&](auto const& param) -> ThrowCompletionOr<void> {
|
|
Value argument_value;
|
|
if (parameter.is_rest) {
|
|
auto array = MUST(Array::create(realm, 0));
|
|
for (size_t rest_index = i; rest_index < execution_context_arguments.size(); ++rest_index)
|
|
array->indexed_properties().append(execution_context_arguments[rest_index]);
|
|
argument_value = array;
|
|
} else if (i < execution_context_arguments.size() && !execution_context_arguments[i].is_undefined()) {
|
|
argument_value = execution_context_arguments[i];
|
|
} else if (parameter.default_value) {
|
|
auto* bytecode_interpreter = vm.bytecode_interpreter_if_exists();
|
|
if (static_cast<FunctionKind>(m_kind) == FunctionKind::Generator || static_cast<FunctionKind>(m_kind) == FunctionKind::AsyncGenerator)
|
|
bytecode_interpreter = &vm.bytecode_interpreter();
|
|
if (bytecode_interpreter) {
|
|
auto value_and_frame = bytecode_interpreter->run_and_return_frame(realm, *m_default_parameter_bytecode_executables[default_parameter_index - 1], nullptr);
|
|
if (value_and_frame.value.is_error())
|
|
return value_and_frame.value.release_error();
|
|
// Resulting value is in the accumulator.
|
|
argument_value = value_and_frame.frame->registers.at(0);
|
|
} else if (interpreter) {
|
|
argument_value = TRY(parameter.default_value->execute(*interpreter)).release_value();
|
|
}
|
|
} else {
|
|
argument_value = js_undefined();
|
|
}
|
|
|
|
Environment* used_environment = has_duplicates ? nullptr : environment;
|
|
|
|
if constexpr (IsSame<NonnullRefPtr<Identifier const> const&, decltype(param)>) {
|
|
if ((vm.bytecode_interpreter_if_exists() || kind() == FunctionKind::Generator || kind() == FunctionKind::AsyncGenerator) && param->is_local()) {
|
|
// NOTE: Local variables are supported only in bytecode interpreter
|
|
callee_context.local_variables[param->local_variable_index()] = argument_value;
|
|
return {};
|
|
} else {
|
|
Reference reference = TRY(vm.resolve_binding(param->string(), used_environment));
|
|
// Here the difference from hasDuplicates is important
|
|
if (has_duplicates)
|
|
return reference.put_value(vm, argument_value);
|
|
else
|
|
return reference.initialize_referenced_binding(vm, argument_value);
|
|
}
|
|
}
|
|
if constexpr (IsSame<NonnullRefPtr<BindingPattern const> const&, decltype(param)>) {
|
|
// Here the difference from hasDuplicates is important
|
|
return vm.binding_initialization(param, argument_value, used_environment);
|
|
}
|
|
}));
|
|
}
|
|
|
|
GCPtr<Environment> var_environment;
|
|
|
|
HashTable<DeprecatedFlyString> instantiated_var_names;
|
|
if (scope_body)
|
|
instantiated_var_names.ensure_capacity(scope_body->var_declaration_count());
|
|
|
|
// 27. If hasParameterExpressions is false, then
|
|
if (!has_parameter_expressions) {
|
|
// a. NOTE: Only a single Environment Record is needed for the parameters and top-level vars.
|
|
|
|
// b. Let instantiatedVarNames be a copy of the List parameterBindings.
|
|
// NOTE: Done in implementation of step 27.c.i.1 below
|
|
|
|
if (scope_body) {
|
|
// NOTE: Due to the use of MUST with `create_mutable_binding` and `initialize_binding` below,
|
|
// an exception should not result from `for_each_var_declared_name`.
|
|
|
|
// c. For each element n of varNames, do
|
|
MUST(scope_body->for_each_var_declared_identifier([&](auto const& id) {
|
|
// i. If instantiatedVarNames does not contain n, then
|
|
if (!parameter_names.contains(id.string()) && instantiated_var_names.set(id.string()) == AK::HashSetResult::InsertedNewEntry) {
|
|
// 1. Append n to instantiatedVarNames.
|
|
|
|
// 2. Perform ! env.CreateMutableBinding(n, false).
|
|
// 3. Perform ! env.InitializeBinding(n, undefined).
|
|
if (vm.bytecode_interpreter_if_exists() && id.is_local()) {
|
|
callee_context.local_variables[id.local_variable_index()] = js_undefined();
|
|
} else {
|
|
MUST(environment->create_mutable_binding(vm, id.string(), false));
|
|
MUST(environment->initialize_binding(vm, id.string(), js_undefined(), Environment::InitializeBindingHint::Normal));
|
|
}
|
|
}
|
|
}));
|
|
}
|
|
|
|
// d.Let varEnv be env
|
|
var_environment = environment;
|
|
}
|
|
// 28. Else,
|
|
else {
|
|
// a. NOTE: A separate Environment Record is needed to ensure that closures created by expressions in the formal parameter list do not have visibility of declarations in the function body.
|
|
|
|
// b. Let varEnv be NewDeclarativeEnvironment(env).
|
|
var_environment = new_declarative_environment(*environment);
|
|
|
|
// c. Set the VariableEnvironment of calleeContext to varEnv.
|
|
callee_context.variable_environment = var_environment;
|
|
|
|
// d. Let instantiatedVarNames be a new empty List.
|
|
// NOTE: Already done above.
|
|
|
|
if (scope_body) {
|
|
// NOTE: Due to the use of MUST with `create_mutable_binding`, `get_binding_value` and `initialize_binding` below,
|
|
// an exception should not result from `for_each_var_declared_name`.
|
|
|
|
// e. For each element n of varNames, do
|
|
MUST(scope_body->for_each_var_declared_identifier([&](auto const& id) {
|
|
// i. If instantiatedVarNames does not contain n, then
|
|
if (instantiated_var_names.set(id.string()) == AK::HashSetResult::InsertedNewEntry) {
|
|
// 1. Append n to instantiatedVarNames.
|
|
|
|
// 2. Perform ! varEnv.CreateMutableBinding(n, false).
|
|
MUST(var_environment->create_mutable_binding(vm, id.string(), false));
|
|
|
|
Value initial_value;
|
|
|
|
// 3. If parameterBindings does not contain n, or if functionNames contains n, then
|
|
if (!parameter_names.contains(id.string()) || function_names.contains(id.string())) {
|
|
// a. Let initialValue be undefined.
|
|
initial_value = js_undefined();
|
|
}
|
|
// 4. Else,
|
|
else {
|
|
// a. Let initialValue be ! env.GetBindingValue(n, false).
|
|
initial_value = MUST(environment->get_binding_value(vm, id.string(), false));
|
|
}
|
|
|
|
// 5. Perform ! varEnv.InitializeBinding(n, initialValue).
|
|
if (vm.bytecode_interpreter_if_exists() && id.is_local()) {
|
|
// NOTE: Local variables are supported only in bytecode interpreter
|
|
callee_context.local_variables[id.local_variable_index()] = initial_value;
|
|
} else {
|
|
MUST(var_environment->initialize_binding(vm, id.string(), initial_value, Environment::InitializeBindingHint::Normal));
|
|
}
|
|
|
|
// 6. NOTE: A var with the same name as a formal parameter initially has the same value as the corresponding initialized parameter.
|
|
}
|
|
}));
|
|
}
|
|
}
|
|
|
|
// 29. NOTE: Annex B.3.2.1 adds additional steps at this point.
|
|
// B.3.2.1 Changes to FunctionDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
|
|
if (!strict && scope_body) {
|
|
// NOTE: Due to the use of MUST with `create_mutable_binding` and `initialize_binding` below,
|
|
// an exception should not result from `for_each_function_hoistable_with_annexB_extension`.
|
|
MUST(scope_body->for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
|
|
auto function_name = function_declaration.name();
|
|
if (parameter_names.contains(function_name))
|
|
return;
|
|
// The spec says 'initializedBindings' here but that does not exist and it then adds it to 'instantiatedVarNames' so it probably means 'instantiatedVarNames'.
|
|
if (!instantiated_var_names.contains(function_name) && function_name != vm.names.arguments.as_string()) {
|
|
MUST(var_environment->create_mutable_binding(vm, function_name, false));
|
|
MUST(var_environment->initialize_binding(vm, function_name, js_undefined(), Environment::InitializeBindingHint::Normal));
|
|
instantiated_var_names.set(function_name);
|
|
}
|
|
|
|
function_declaration.set_should_do_additional_annexB_steps();
|
|
}));
|
|
}
|
|
|
|
GCPtr<Environment> lex_environment;
|
|
|
|
// 30. If strict is false, then
|
|
if (!strict) {
|
|
// Optimization: We avoid creating empty top-level declarative environments in non-strict mode, if both of these conditions are true:
|
|
// 1. there is no direct call to eval() within this function
|
|
// 2. there are no lexical declarations that would go into the environment
|
|
bool can_elide_declarative_environment = !m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_lexical_declarations());
|
|
if (can_elide_declarative_environment) {
|
|
lex_environment = var_environment;
|
|
} else {
|
|
// a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
|
|
// b. NOTE: Non-strict functions use a separate Environment Record for top-level lexical declarations so that a direct eval
|
|
// can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level
|
|
// lexically scoped declarations. This is not needed for strict functions because a strict direct eval always places
|
|
// all declarations into a new Environment Record.
|
|
lex_environment = new_declarative_environment(*var_environment);
|
|
}
|
|
}
|
|
// 31. Else,
|
|
else {
|
|
// a. let lexEnv be varEnv.
|
|
lex_environment = var_environment;
|
|
}
|
|
|
|
// 32. Set the LexicalEnvironment of calleeContext to lexEnv.
|
|
callee_context.lexical_environment = lex_environment;
|
|
|
|
if (!scope_body)
|
|
return {};
|
|
|
|
// 33. Let lexDeclarations be the LexicallyScopedDeclarations of code.
|
|
// 34. For each element d of lexDeclarations, do
|
|
// NOTE: Due to the use of MUST in the callback, an exception should not result from `for_each_lexically_scoped_declaration`.
|
|
MUST(scope_body->for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
|
|
// NOTE: Due to the use of MUST with `create_immutable_binding` and `create_mutable_binding` below,
|
|
// an exception should not result from `for_each_bound_name`.
|
|
|
|
// a. NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
|
|
|
|
// b. For each element dn of the BoundNames of d, do
|
|
MUST(declaration.for_each_bound_identifier([&](auto const& id) {
|
|
if (vm.bytecode_interpreter_if_exists() && id.is_local()) {
|
|
// NOTE: Local variables are supported only in bytecode interpreter
|
|
return;
|
|
}
|
|
|
|
// i. If IsConstantDeclaration of d is true, then
|
|
if (declaration.is_constant_declaration()) {
|
|
// 1. Perform ! lexEnv.CreateImmutableBinding(dn, true).
|
|
MUST(lex_environment->create_immutable_binding(vm, id.string(), true));
|
|
}
|
|
// ii. Else,
|
|
else {
|
|
// 1. Perform ! lexEnv.CreateMutableBinding(dn, false).
|
|
MUST(lex_environment->create_mutable_binding(vm, id.string(), false));
|
|
}
|
|
}));
|
|
}));
|
|
|
|
// 35. Let privateEnv be the PrivateEnvironment of calleeContext.
|
|
auto private_environment = callee_context.private_environment;
|
|
|
|
// 36. For each Parse Node f of functionsToInitialize, do
|
|
for (auto& declaration : functions_to_initialize) {
|
|
// a. Let fn be the sole element of the BoundNames of f.
|
|
// b. Let fo be InstantiateFunctionObject of f with arguments lexEnv and privateEnv.
|
|
auto function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), declaration.local_variables_names(), lex_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
|
|
|
|
// c. Perform ! varEnv.SetMutableBinding(fn, fo, false).
|
|
if ((vm.bytecode_interpreter_if_exists() || kind() == FunctionKind::Generator || kind() == FunctionKind::AsyncGenerator) && declaration.name_identifier()->is_local()) {
|
|
callee_context.local_variables[declaration.name_identifier()->local_variable_index()] = function;
|
|
} else {
|
|
MUST(var_environment->set_mutable_binding(vm, declaration.name(), function, false));
|
|
}
|
|
}
|
|
|
|
if (is<DeclarativeEnvironment>(*lex_environment))
|
|
static_cast<DeclarativeEnvironment*>(lex_environment.ptr())->shrink_to_fit();
|
|
if (is<DeclarativeEnvironment>(*var_environment))
|
|
static_cast<DeclarativeEnvironment*>(var_environment.ptr())->shrink_to_fit();
|
|
|
|
// 37. Return unused.
|
|
return {};
|
|
}
|
|
|
|
// 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall
|
|
ThrowCompletionOr<void> ECMAScriptFunctionObject::prepare_for_ordinary_call(ExecutionContext& callee_context, Object* new_target)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// Non-standard
|
|
callee_context.is_strict_mode = m_strict;
|
|
|
|
// 1. Let callerContext be the running execution context.
|
|
// 2. Let calleeContext be a new ECMAScript code execution context.
|
|
|
|
// NOTE: In the specification, PrepareForOrdinaryCall "returns" a new callee execution context.
|
|
// To avoid heap allocations, we put our ExecutionContext objects on the C++ stack instead.
|
|
// Whoever calls us should put an ExecutionContext on their stack and pass that as the `callee_context`.
|
|
|
|
// 3. Set the Function of calleeContext to F.
|
|
callee_context.function = this;
|
|
callee_context.function_name = m_name;
|
|
|
|
// 4. Let calleeRealm be F.[[Realm]].
|
|
auto callee_realm = m_realm;
|
|
// NOTE: This non-standard fallback is needed until we can guarantee that literally
|
|
// every function has a realm - especially in LibWeb that's sometimes not the case
|
|
// when a function is created while no JS is running, as we currently need to rely on
|
|
// that (:acid2:, I know - see set_event_handler_attribute() for an example).
|
|
// If there's no 'current realm' either, we can't continue and crash.
|
|
if (!callee_realm)
|
|
callee_realm = vm.current_realm();
|
|
VERIFY(callee_realm);
|
|
|
|
// 5. Set the Realm of calleeContext to calleeRealm.
|
|
callee_context.realm = callee_realm;
|
|
|
|
// 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
|
|
callee_context.script_or_module = m_script_or_module;
|
|
|
|
// 7. Let localEnv be NewFunctionEnvironment(F, newTarget).
|
|
auto local_environment = new_function_environment(*this, new_target);
|
|
|
|
// 8. Set the LexicalEnvironment of calleeContext to localEnv.
|
|
callee_context.lexical_environment = local_environment;
|
|
|
|
// 9. Set the VariableEnvironment of calleeContext to localEnv.
|
|
callee_context.variable_environment = local_environment;
|
|
|
|
// 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]].
|
|
callee_context.private_environment = m_private_environment;
|
|
|
|
// 11. If callerContext is not already suspended, suspend callerContext.
|
|
// FIXME: We don't have this concept yet.
|
|
|
|
// 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
|
|
TRY(vm.push_execution_context(callee_context, {}));
|
|
|
|
// 13. NOTE: Any exception objects produced after this point are associated with calleeRealm.
|
|
// 14. Return calleeContext.
|
|
// NOTE: See the comment after step 2 above about how contexts are allocated on the C++ stack.
|
|
return {};
|
|
}
|
|
|
|
// 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis
|
|
void ECMAScriptFunctionObject::ordinary_call_bind_this(ExecutionContext& callee_context, Value this_argument)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let thisMode be F.[[ThisMode]].
|
|
auto this_mode = m_this_mode;
|
|
|
|
// If thisMode is lexical, return unused.
|
|
if (this_mode == ThisMode::Lexical)
|
|
return;
|
|
|
|
// 3. Let calleeRealm be F.[[Realm]].
|
|
auto callee_realm = m_realm;
|
|
// NOTE: This non-standard fallback is needed until we can guarantee that literally
|
|
// every function has a realm - especially in LibWeb that's sometimes not the case
|
|
// when a function is created while no JS is running, as we currently need to rely on
|
|
// that (:acid2:, I know - see set_event_handler_attribute() for an example).
|
|
// If there's no 'current realm' either, we can't continue and crash.
|
|
if (!callee_realm)
|
|
callee_realm = vm.current_realm();
|
|
VERIFY(callee_realm);
|
|
|
|
// 4. Let localEnv be the LexicalEnvironment of calleeContext.
|
|
auto local_env = callee_context.lexical_environment;
|
|
|
|
Value this_value;
|
|
|
|
// 5. If thisMode is strict, let thisValue be thisArgument.
|
|
if (this_mode == ThisMode::Strict) {
|
|
this_value = this_argument;
|
|
}
|
|
// 6. Else,
|
|
else {
|
|
// a. If thisArgument is undefined or null, then
|
|
if (this_argument.is_nullish()) {
|
|
// i. Let globalEnv be calleeRealm.[[GlobalEnv]].
|
|
// ii. Assert: globalEnv is a global Environment Record.
|
|
auto& global_env = callee_realm->global_environment();
|
|
|
|
// iii. Let thisValue be globalEnv.[[GlobalThisValue]].
|
|
this_value = &global_env.global_this_value();
|
|
}
|
|
// b. Else,
|
|
else {
|
|
// i. Let thisValue be ! ToObject(thisArgument).
|
|
this_value = MUST(this_argument.to_object(vm));
|
|
|
|
// ii. NOTE: ToObject produces wrapper objects using calleeRealm.
|
|
VERIFY(vm.current_realm() == callee_realm);
|
|
}
|
|
}
|
|
|
|
// 7. Assert: localEnv is a function Environment Record.
|
|
// 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized.
|
|
// 9. Perform ! localEnv.BindThisValue(thisValue).
|
|
MUST(verify_cast<FunctionEnvironment>(*local_env).bind_this_value(vm, this_value));
|
|
|
|
// 10. Return unused.
|
|
}
|
|
|
|
// 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start
|
|
template<typename T>
|
|
void async_function_start(VM& vm, PromiseCapability const& promise_capability, T const& async_function_body)
|
|
{
|
|
// 1. Let runningContext be the running execution context.
|
|
auto& running_context = vm.running_execution_context();
|
|
|
|
// 2. Let asyncContext be a copy of runningContext.
|
|
auto async_context = running_context.copy();
|
|
|
|
// 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context.
|
|
|
|
// 4. Perform AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext).
|
|
async_block_start(vm, async_function_body, promise_capability, async_context);
|
|
|
|
// 5. Return unused.
|
|
}
|
|
|
|
// 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart
|
|
// 12.7.1.1 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/proposal-explicit-resource-management/#sec-asyncblockstart
|
|
// 1.2.1.1 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/proposal-array-from-async/#sec-asyncblockstart
|
|
template<typename T>
|
|
void async_block_start(VM& vm, T const& async_body, PromiseCapability const& promise_capability, ExecutionContext& async_context)
|
|
{
|
|
// NOTE: This function is a combination between two proposals, so does not exactly match spec steps of either.
|
|
|
|
auto& realm = *vm.current_realm();
|
|
|
|
// 1. Assert: promiseCapability is a PromiseCapability Record.
|
|
|
|
// 2. Let runningContext be the running execution context.
|
|
auto& running_context = vm.running_execution_context();
|
|
|
|
// 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context the following steps will be performed:
|
|
auto execution_steps = NativeFunction::create(realm, "", [&realm, &async_body, &promise_capability, &async_context](auto& vm) -> ThrowCompletionOr<Value> {
|
|
Completion result;
|
|
|
|
// a. If asyncBody is a Parse Node, then
|
|
if constexpr (!IsCallableWithArguments<T, Completion>) {
|
|
// a. Let result be the result of evaluating asyncBody.
|
|
if (auto* bytecode_interpreter = vm.bytecode_interpreter_if_exists()) {
|
|
// FIXME: Cache this executable somewhere.
|
|
auto maybe_executable = Bytecode::compile(vm, async_body, FunctionKind::Async, "AsyncBlockStart"sv);
|
|
if (maybe_executable.is_error())
|
|
result = maybe_executable.release_error();
|
|
else
|
|
result = bytecode_interpreter->run_and_return_frame(realm, *maybe_executable.value(), nullptr).value;
|
|
} else {
|
|
result = async_body->execute(vm.interpreter());
|
|
}
|
|
}
|
|
// b. Else,
|
|
else {
|
|
(void)realm;
|
|
|
|
// i. Assert: asyncBody is an Abstract Closure with no parameters.
|
|
static_assert(IsCallableWithArguments<T, Completion>);
|
|
|
|
// ii. Let result be asyncBody().
|
|
result = async_body();
|
|
}
|
|
|
|
// c. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.
|
|
|
|
// d. Remove asyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// NOTE: This does not work for Array.fromAsync, likely due to conflicts between that proposal and Explicit Resource Management proposal.
|
|
if constexpr (!IsCallableWithArguments<T, Completion>) {
|
|
// e. Let env be asyncContext's LexicalEnvironment.
|
|
auto env = async_context.lexical_environment;
|
|
|
|
// f. Set result to DisposeResources(env, result).
|
|
result = dispose_resources(vm, verify_cast<DeclarativeEnvironment>(env.ptr()), result);
|
|
} else {
|
|
(void)async_context;
|
|
}
|
|
|
|
// g. If result.[[Type]] is normal, then
|
|
if (result.type() == Completion::Type::Normal) {
|
|
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »).
|
|
MUST(call(vm, *promise_capability.resolve(), js_undefined(), js_undefined()));
|
|
}
|
|
// h. Else if result.[[Type]] is return, then
|
|
else if (result.type() == Completion::Type::Return) {
|
|
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »).
|
|
MUST(call(vm, *promise_capability.resolve(), js_undefined(), *result.value()));
|
|
}
|
|
// i. Else,
|
|
else {
|
|
// i. Assert: result.[[Type]] is throw.
|
|
VERIFY(result.type() == Completion::Type::Throw);
|
|
|
|
// ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »).
|
|
MUST(call(vm, *promise_capability.reject(), js_undefined(), *result.value()));
|
|
}
|
|
// j. Return unused.
|
|
// NOTE: We don't support returning an empty/optional/unused value here.
|
|
return js_undefined();
|
|
});
|
|
|
|
// 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
|
|
auto push_result = vm.push_execution_context(async_context, {});
|
|
if (push_result.is_error())
|
|
return;
|
|
|
|
// 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation.
|
|
auto result = call(vm, *execution_steps, async_context.this_value.is_empty() ? js_undefined() : async_context.this_value);
|
|
|
|
// 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context.
|
|
VERIFY(&vm.running_execution_context() == &running_context);
|
|
|
|
// 7. Assert: result is a normal completion with a value of unused. The possible sources of this value are Await or, if the async function doesn't await anything, step 3.g above.
|
|
VERIFY(result.has_value() && result.value().is_undefined());
|
|
|
|
// 8. Return unused.
|
|
}
|
|
|
|
template void async_block_start(VM&, NonnullGCPtr<Statement const> const& async_body, PromiseCapability const&, ExecutionContext&);
|
|
template void async_function_start(VM&, PromiseCapability const&, NonnullGCPtr<Statement const> const& async_function_body);
|
|
|
|
template void async_block_start(VM&, SafeFunction<Completion()> const& async_body, PromiseCapability const&, ExecutionContext&);
|
|
template void async_function_start(VM&, PromiseCapability const&, SafeFunction<Completion()> const& async_function_body);
|
|
|
|
// 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody
|
|
// 15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatefunctionbody
|
|
Completion ECMAScriptFunctionObject::ordinary_call_evaluate_body()
|
|
{
|
|
auto& vm = this->vm();
|
|
auto& realm = *vm.current_realm();
|
|
|
|
auto* bytecode_interpreter = vm.bytecode_interpreter_if_exists();
|
|
|
|
// The bytecode interpreter can execute generator functions while the AST interpreter cannot.
|
|
// This simply makes it create a new bytecode interpreter when one doesn't exist when executing a generator function.
|
|
// Doing so makes it automatically switch to the bytecode interpreter to execute any future code until it exits the generator. See below.
|
|
// This allows us to keep all of the existing functionality that works in AST while adding generator support on top of it.
|
|
// However, this does cause an awkward situation with features not supported in bytecode, where features that work outside of generators with AST
|
|
// suddenly stop working inside of generators.
|
|
// This is a stop gap until bytecode mode becomes the default.
|
|
if ((m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator) && !bytecode_interpreter) {
|
|
bytecode_interpreter = &vm.bytecode_interpreter();
|
|
}
|
|
|
|
if (bytecode_interpreter) {
|
|
// NOTE: There's a subtle ordering issue here:
|
|
// - We have to compile the default parameter values before instantiating the function.
|
|
// - We have to instantiate the function before compiling the function body.
|
|
// This is why FunctionDeclarationInstantiation is invoked in the middle.
|
|
// The issue is that FunctionDeclarationInstantiation may mark certain functions as hoisted
|
|
// per Annex B. This affects code generation for FunctionDeclaration nodes.
|
|
|
|
if (!m_bytecode_executable) {
|
|
size_t default_parameter_index = 0;
|
|
for (auto& parameter : m_formal_parameters) {
|
|
if (!parameter.default_value)
|
|
continue;
|
|
auto executable = TRY(Bytecode::compile(vm, *parameter.default_value, FunctionKind::Normal, DeprecatedString::formatted("default parameter #{} for {}", default_parameter_index, m_name)));
|
|
m_default_parameter_bytecode_executables.append(move(executable));
|
|
}
|
|
}
|
|
|
|
auto declaration_result = function_declaration_instantiation(nullptr);
|
|
|
|
if (m_kind == FunctionKind::Normal || m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator) {
|
|
if (declaration_result.is_error())
|
|
return declaration_result.release_error();
|
|
}
|
|
|
|
if (!m_bytecode_executable)
|
|
m_bytecode_executable = TRY(Bytecode::compile(vm, *m_ecmascript_code, m_kind, m_name));
|
|
|
|
if (m_kind == FunctionKind::Async) {
|
|
if (declaration_result.is_throw_completion()) {
|
|
auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor()));
|
|
MUST(call(vm, *promise_capability->reject(), js_undefined(), *declaration_result.throw_completion().value()));
|
|
return Completion { Completion::Type::Return, promise_capability->promise(), {} };
|
|
}
|
|
}
|
|
|
|
auto result_and_frame = bytecode_interpreter->run_and_return_frame(realm, *m_bytecode_executable, nullptr);
|
|
|
|
VERIFY(result_and_frame.frame != nullptr);
|
|
if (result_and_frame.value.is_error())
|
|
return result_and_frame.value.release_error();
|
|
|
|
auto result = result_and_frame.value.release_value();
|
|
|
|
// NOTE: Running the bytecode should eventually return a completion.
|
|
// Until it does, we assume "return" and include the undefined fallback from the call site.
|
|
if (m_kind == FunctionKind::Normal)
|
|
return { Completion::Type::Return, result.value_or(js_undefined()), {} };
|
|
|
|
if (m_kind == FunctionKind::AsyncGenerator) {
|
|
auto async_generator_object = TRY(AsyncGenerator::create(realm, result, this, vm.running_execution_context().copy(), move(*result_and_frame.frame)));
|
|
return { Completion::Type::Return, async_generator_object, {} };
|
|
}
|
|
|
|
auto generator_object = TRY(GeneratorObject::create(realm, result, this, vm.running_execution_context().copy(), move(*result_and_frame.frame)));
|
|
|
|
// NOTE: Async functions are entirely transformed to generator functions, and wrapped in a custom driver that returns a promise
|
|
// See AwaitExpression::generate_bytecode() for the transformation.
|
|
if (m_kind == FunctionKind::Async)
|
|
return { Completion::Type::Return, TRY(AsyncFunctionDriverWrapper::create(realm, generator_object)), {} };
|
|
|
|
VERIFY(m_kind == FunctionKind::Generator);
|
|
return { Completion::Type::Return, generator_object, {} };
|
|
} else {
|
|
if (m_kind == FunctionKind::Generator)
|
|
return vm.throw_completion<InternalError>(ErrorType::NotImplemented, "Generator function execution in AST interpreter");
|
|
if (m_kind == FunctionKind::AsyncGenerator)
|
|
return vm.throw_completion<InternalError>(ErrorType::NotImplemented, "Async generator function execution in AST interpreter");
|
|
OwnPtr<Interpreter> local_interpreter;
|
|
Interpreter* ast_interpreter = vm.interpreter_if_exists();
|
|
|
|
if (!ast_interpreter) {
|
|
local_interpreter = Interpreter::create_with_existing_realm(realm);
|
|
ast_interpreter = local_interpreter.ptr();
|
|
}
|
|
|
|
VM::InterpreterExecutionScope scope(*ast_interpreter);
|
|
|
|
// FunctionBody : FunctionStatementList
|
|
if (m_kind == FunctionKind::Normal) {
|
|
// 1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList).
|
|
TRY(function_declaration_instantiation(ast_interpreter));
|
|
|
|
// 2. Let result be result of evaluating FunctionStatementList.
|
|
auto result = m_ecmascript_code->execute(*ast_interpreter);
|
|
|
|
// 3. Let env be the running execution context's LexicalEnvironment.
|
|
auto env = vm.running_execution_context().lexical_environment;
|
|
VERIFY(is<DeclarativeEnvironment>(*env));
|
|
|
|
// 4. Return ? DisposeResources(env, result).
|
|
return dispose_resources(vm, static_cast<DeclarativeEnvironment*>(env.ptr()), result);
|
|
}
|
|
// AsyncFunctionBody : FunctionBody
|
|
else if (m_kind == FunctionKind::Async) {
|
|
// 1. Let promiseCapability be ! NewPromiseCapability(%Promise%).
|
|
auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor()));
|
|
|
|
// 2. Let declResult be Completion(FunctionDeclarationInstantiation(functionObject, argumentsList)).
|
|
auto declaration_result = function_declaration_instantiation(ast_interpreter);
|
|
|
|
// 3. If declResult is an abrupt completion, then
|
|
if (declaration_result.is_throw_completion()) {
|
|
// a. Perform ! Call(promiseCapability.[[Reject]], undefined, « declResult.[[Value]] »).
|
|
MUST(call(vm, *promise_capability->reject(), js_undefined(), *declaration_result.throw_completion().value()));
|
|
}
|
|
// 4. Else,
|
|
else {
|
|
// a. Perform AsyncFunctionStart(promiseCapability, FunctionBody).
|
|
async_function_start(vm, promise_capability, m_ecmascript_code);
|
|
}
|
|
|
|
// 5. Return Completion Record { [[Type]]: return, [[Value]]: promiseCapability.[[Promise]], [[Target]]: empty }.
|
|
return Completion { Completion::Type::Return, promise_capability->promise(), {} };
|
|
}
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
void ECMAScriptFunctionObject::set_name(DeprecatedFlyString const& name)
|
|
{
|
|
VERIFY(!name.is_null());
|
|
auto& vm = this->vm();
|
|
m_name = name;
|
|
MUST(define_property_or_throw(vm.names.name, { .value = PrimitiveString::create(vm, m_name), .writable = false, .enumerable = false, .configurable = true }));
|
|
}
|
|
|
|
}
|