Commit graph

9 commits

Author SHA1 Message Date
Liav A
2def16a3d2 Kernel/Graphics: Introduce the IntelDisplayConnectorGroup class
In the real world, graphics hardware tend to have multiple display
connectors. However, usually the connectors share one register space but
still keeping different PLL timings and display lanes.
This new class should represent a group of multiple display connectors
working together in the same Intel graphics adapter. This opens an
opportunity to abstract the interface so we could support future Intel
iGPU generations.

This is also a preparation before the driver can support newer devices
and utilize their capabilities.
The mentioned preparation is applied in a these aspects:
1. The code is splitted into more classes to adjust to future expansion.
2 classes are introduced: IntelDisplayPlane and IntelDisplayTranscoder,
so the IntelDisplayPlane controls the plane registers and second class
controls the pipeline (transcoder, encoder) registers. On gen4 it's not
really useful because there are probably one plane and one encoder to
care about, but in future generations, there are likely to be multiple
transcoders and planes to accommodate multi head support.
2. The set_edid_bytes method in the DisplayConnector class can now be
told to not assume the provided EDID bytes are always invalid. Therefore
it can refrain from printing error messages if this flag parameter is
true. This is useful for supporting real hardware situation when on boot
not all ports are connected to a monitor, which can result in floating
bus condition (essentially all the bytes we read are 0xFF).
3. An IntelNativeDisplayConnector could now be set to flag other types
of connections such as eDP (embedded DisplayPort), Analog output, etc.
This is important because on the Intel gen4 graphics we could assume to
have one analog output connector, but on future generations this is very
likely to not be the case, as there might be no VGA outputs, but rather
only an eDP connector which is converted to VGA by a design choice of
the motherboard manufacturer.
4. Add ConnectorIndex to IntelNativeDisplayConnector class - Currently
this is used to verify we always handle the correct connector when doing
modesetting.
Later, it will be used to locate special settings needed when handling
connector requests.
5. Prepare to support more types of display planes. For example, the
Intel Skylake register set for display planes is a bit different, so
let's ensure we can properly support it in the near future.
2023-02-19 15:01:01 -07:00
Liav A
0c64abb5e3 Kernel: Split I2C functionality from IntelNativeDisplayConnector code
Splitting the I2C-related code lets the DisplayConnector code to utilize
I2C operations without caring about the specific details of the hardware
and allow future expansion of the driver to other newer generations
sharing the same GMBus code.

We should require a timeout for GMBus operations always, because faulty
hardware could let us just spin forever. Also, if nothing is listening
to the bus (which should result in a NAK), we could also spin forever.
2023-02-02 02:10:33 -07:00
Sam Atkins
3cbc0fdbb0 Kernel: Remove declarations for non-existent methods 2023-01-27 20:33:18 +00:00
Liav A
72b144e9e9 Kernel/Graphics: Introduce a new mechanism to initialize a PCI device
Instead of using a clunky switch-case paradigm, we now have all drivers
being declaring two methods for their adapter class - create and probe.
These methods are linked in each PCIGraphicsDriverInitializer structure,
in a new s_initializers static list of them.
Then, when we probe for a PCI device, we use each probe method and if
there's a match, then the corresponding create method is called.

As a result of this change, it's much more easy to add more drivers and
the initialization code is more readable.
2023-01-07 11:51:13 -07:00
kleines Filmröllchen
a6a439243f Kernel: Turn lock ranks into template parameters
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
  obtain any lock rank just via the template parameter. It was not
  previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
  of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
  readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
  wanted in the first place (or made use of). Locks randomly changing
  their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
  taken in the right order (with the right lock rank checking
  implementation) as rank information is fully statically known.

This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
2023-01-02 18:15:27 -05:00
Andreas Kling
11eee67b85 Kernel: Make self-contained locking smart pointers their own classes
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:

- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable

This patch renames the Kernel classes so that they can coexist with
the original AK classes:

- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable

The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
2022-08-20 17:20:43 +02:00
kleines Filmröllchen
4314c25cf2 Kernel: Require lock rank for Spinlock construction
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
2022-08-19 20:26:47 -07:00
Liav A
e2ed6ef741 Kernel/Graphics: Bring back the mmap interface for DisplayConnectors
The mmap interface was removed when we introduced the DisplayConnector
class, as it was quite unsafe to use and didn't handle switching between
graphical and text modes safely. By using the SharedFramebufferVMObject,
we are able to elegantly coordinate the switch by remapping the attached
mmap'ed-Memory::Region(s) with different mappings, therefore, keeping
WindowServer to think that the mappings it has are still valid, while
they are going to a different physical range until we are back to the
graphical mode (after a switch from text mode).

Most drivers take advantage of the fact that we know where is the actual
framebuffer in physical memory space, the SharedFramebufferVMObject is
created with that information. However, the VirtIO driver is different
in that aspect, because it relies on DMA transactions to show graphics
on the framebuffer, so the SharedFramebufferVMObject is created with
that mindset to support the arbitrary framebuffer location in physical
memory space.
2022-06-06 20:11:05 +01:00
Liav A
728358c599 Kernel/Graphics: Migrate Intel driver to use the DisplayConnector design 2022-05-05 20:55:57 +02:00