Kernel/Graphics: Migrate Intel driver to use the DisplayConnector design

This commit is contained in:
Liav A 2022-04-30 08:28:38 +03:00 committed by Andreas Kling
parent e9a74cbefb
commit 728358c599
Notes: sideshowbarker 2024-07-17 11:17:10 +09:00
5 changed files with 929 additions and 777 deletions

View file

@ -85,6 +85,7 @@ set(KERNEL_SOURCES
Graphics/DisplayConnector.cpp
Graphics/FramebufferDevice.cpp
Graphics/GraphicsManagement.cpp
Graphics/Intel/NativeDisplayConnector.cpp
Graphics/Intel/NativeGraphicsAdapter.cpp
Graphics/VGA/ISAAdapter.cpp
Graphics/VGA/PCIAdapter.cpp

View file

@ -0,0 +1,732 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/DeviceManagement.h>
#include <Kernel/Graphics/Console/ContiguousFramebufferConsole.h>
#include <Kernel/Graphics/GraphicsManagement.h>
#include <Kernel/Graphics/Intel/NativeDisplayConnector.h>
#include <Kernel/Memory/Region.h>
namespace Kernel {
namespace IntelGraphics {
#define DDC2_I2C_ADDRESS 0x50
struct PLLSettings {
bool is_valid() const { return (n != 0 && m1 != 0 && m2 != 0 && p1 != 0 && p2 != 0); }
u64 compute_dot_clock(u64 refclock) const
{
return (refclock * (5 * m1 + m2) / n) / (p1 * p2);
}
u64 compute_vco(u64 refclock) const
{
return refclock * (5 * m1 + m2) / n;
}
u64 compute_m() const
{
return 5 * m1 + m2;
}
u64 compute_p() const
{
return p1 * p2;
}
u64 n { 0 };
u64 m1 { 0 };
u64 m2 { 0 };
u64 p1 { 0 };
u64 p2 { 0 };
};
static constexpr PLLMaxSettings G35Limits {
{ 20'000'000, 400'000'000 }, // values in Hz, dot_clock
{ 1'400'000'000, 2'800'000'000 }, // values in Hz, VCO
{ 3, 8 }, // n
{ 70, 120 }, // m
{ 10, 20 }, // m1
{ 5, 9 }, // m2
{ 5, 80 }, // p
{ 1, 8 }, // p1
{ 5, 10 } // p2
};
}
static Graphics::Modesetting calculate_modesetting_from_edid(EDID::Parser& edid, size_t index)
{
auto details = edid.detailed_timing(index).release_value();
Graphics::Modesetting mode;
VERIFY(details.pixel_clock_khz());
mode.pixel_clock_in_khz = details.pixel_clock_khz();
size_t horizontal_active = details.horizontal_addressable_pixels();
size_t horizontal_sync_offset = details.horizontal_front_porch_pixels();
mode.horizontal.active = horizontal_active;
mode.horizontal.sync_start = horizontal_active + horizontal_sync_offset;
mode.horizontal.sync_end = horizontal_active + horizontal_sync_offset + details.horizontal_sync_pulse_width_pixels();
mode.horizontal.total = horizontal_active + details.horizontal_blanking_pixels();
size_t vertical_active = details.vertical_addressable_lines();
size_t vertical_sync_offset = details.vertical_front_porch_lines();
mode.vertical.active = vertical_active;
mode.vertical.sync_start = vertical_active + vertical_sync_offset;
mode.vertical.sync_end = vertical_active + vertical_sync_offset + details.vertical_sync_pulse_width_lines();
mode.vertical.total = vertical_active + details.vertical_blanking_lines();
return mode;
}
static bool check_pll_settings(IntelGraphics::PLLSettings const& settings, size_t reference_clock, IntelGraphics::PLLMaxSettings const& limits)
{
if (settings.n < limits.n.min || settings.n > limits.n.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "N is invalid {}", settings.n);
return false;
}
if (settings.m1 < limits.m1.min || settings.m1 > limits.m1.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m1 is invalid {}", settings.m1);
return false;
}
if (settings.m2 < limits.m2.min || settings.m2 > limits.m2.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m2 is invalid {}", settings.m2);
return false;
}
if (settings.p1 < limits.p1.min || settings.p1 > limits.p1.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "p1 is invalid {}", settings.p1);
return false;
}
if (settings.m1 <= settings.m2) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m2 is invalid {} as it is bigger than m1 {}", settings.m2, settings.m1);
return false;
}
auto m = settings.compute_m();
auto p = settings.compute_p();
if (m < limits.m.min || m > limits.m.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m invalid {}", m);
return false;
}
if (p < limits.p.min || p > limits.p.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "p invalid {}", p);
return false;
}
auto dot = settings.compute_dot_clock(reference_clock);
auto vco = settings.compute_vco(reference_clock);
if (dot < limits.dot_clock.min || dot > limits.dot_clock.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "Dot clock invalid {}", dot);
return false;
}
if (vco < limits.vco.min || vco > limits.vco.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "VCO clock invalid {}", vco);
return false;
}
return true;
}
static size_t find_absolute_difference(u64 target_frequency, u64 checked_frequency)
{
if (target_frequency >= checked_frequency)
return target_frequency - checked_frequency;
return checked_frequency - target_frequency;
}
Optional<IntelGraphics::PLLSettings> IntelNativeDisplayConnector::create_pll_settings(u64 target_frequency, u64 reference_clock, IntelGraphics::PLLMaxSettings const& limits)
{
IntelGraphics::PLLSettings settings;
IntelGraphics::PLLSettings best_settings;
// FIXME: Is this correct for all Intel Native graphics cards?
settings.p2 = 10;
dbgln_if(INTEL_GRAPHICS_DEBUG, "Check PLL settings for ref clock of {} Hz, for target of {} Hz", reference_clock, target_frequency);
u64 best_difference = 0xffffffff;
for (settings.n = limits.n.min; settings.n <= limits.n.max; ++settings.n) {
for (settings.m1 = limits.m1.max; settings.m1 >= limits.m1.min; --settings.m1) {
for (settings.m2 = limits.m2.max; settings.m2 >= limits.m2.min; --settings.m2) {
for (settings.p1 = limits.p1.max; settings.p1 >= limits.p1.min; --settings.p1) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "Check PLL settings for {} {} {} {} {}", settings.n, settings.m1, settings.m2, settings.p1, settings.p2);
if (!check_pll_settings(settings, reference_clock, limits))
continue;
auto current_dot_clock = settings.compute_dot_clock(reference_clock);
if (current_dot_clock == target_frequency)
return settings;
auto difference = find_absolute_difference(target_frequency, current_dot_clock);
if (difference < best_difference && (current_dot_clock > target_frequency)) {
best_settings = settings;
best_difference = difference;
}
}
}
}
}
if (best_settings.is_valid())
return best_settings;
return {};
}
NonnullRefPtr<IntelNativeDisplayConnector> IntelNativeDisplayConnector::must_create(PhysicalAddress framebuffer_address, PhysicalAddress registers_region_address, size_t registers_region_length)
{
auto registers_region = MUST(MM.allocate_kernel_region(PhysicalAddress(registers_region_address), registers_region_length, "Intel Native Graphics Registers", Memory::Region::Access::ReadWrite));
auto device_or_error = DeviceManagement::try_create_device<IntelNativeDisplayConnector>(framebuffer_address, move(registers_region));
VERIFY(!device_or_error.is_error());
auto connector = device_or_error.release_value();
MUST(connector->initialize_gmbus_settings_and_read_edid());
// Note: This is very important to set the resolution to something safe so we
// can create a framebuffer console with valid resolution.
{
SpinlockLocker control_lock(connector->m_control_lock);
MUST(connector->set_safe_mode_setting());
}
MUST(connector->create_attached_framebuffer_console());
return connector;
}
ErrorOr<void> IntelNativeDisplayConnector::initialize_gmbus_settings_and_read_edid()
{
gmbus_read_edid();
return {};
}
ErrorOr<void> IntelNativeDisplayConnector::set_y_offset(size_t)
{
return Error::from_errno(ENOTIMPL);
}
ErrorOr<void> IntelNativeDisplayConnector::unblank()
{
return Error::from_errno(ENOTIMPL);
}
ErrorOr<size_t> IntelNativeDisplayConnector::write_to_first_surface(u64 offset, UserOrKernelBuffer const& buffer, size_t length)
{
VERIFY(m_control_lock.is_locked());
if (offset + length > m_framebuffer_region->size())
return Error::from_errno(EOVERFLOW);
TRY(buffer.read(m_framebuffer_data + offset, 0, length));
return length;
}
void IntelNativeDisplayConnector::enable_console()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_framebuffer_console);
m_framebuffer_console->enable();
}
void IntelNativeDisplayConnector::disable_console()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_framebuffer_console);
m_framebuffer_console->disable();
}
ErrorOr<void> IntelNativeDisplayConnector::flush_first_surface()
{
return Error::from_errno(ENOTSUP);
}
ErrorOr<void> IntelNativeDisplayConnector::create_attached_framebuffer_console()
{
auto rounded_size = TRY(Memory::page_round_up(m_current_mode_setting.vertical_active * m_current_mode_setting.horizontal_stride));
m_framebuffer_region = TRY(MM.allocate_kernel_region(m_framebuffer_address.page_base(), rounded_size, "Framebuffer"sv, Memory::Region::Access::ReadWrite));
[[maybe_unused]] auto result = m_framebuffer_region->set_write_combine(true);
m_framebuffer_data = m_framebuffer_region->vaddr().offset(m_framebuffer_address.offset_in_page()).as_ptr();
m_framebuffer_console = Graphics::ContiguousFramebufferConsole::initialize(m_framebuffer_address, m_current_mode_setting.horizontal_active, m_current_mode_setting.vertical_active, m_current_mode_setting.horizontal_stride);
GraphicsManagement::the().set_console(*m_framebuffer_console);
return {};
}
IntelNativeDisplayConnector::IntelNativeDisplayConnector(PhysicalAddress framebuffer_address, NonnullOwnPtr<Memory::Region> registers_region)
: DisplayConnector()
, m_framebuffer_address(framebuffer_address)
, m_registers_region(move(registers_region))
{
{
SpinlockLocker control_lock(m_control_lock);
set_gmbus_default_rate();
set_gmbus_pin_pair(IntelGraphics::GMBusPinPair::DedicatedAnalog);
}
}
ErrorOr<void> IntelNativeDisplayConnector::set_mode_setting(DisplayConnector::ModeSetting const&)
{
return Error::from_errno(ENOTIMPL);
}
ErrorOr<void> IntelNativeDisplayConnector::set_safe_mode_setting()
{
set_safe_crt_resolution();
return {};
}
void IntelNativeDisplayConnector::enable_vga_plane()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
}
[[maybe_unused]] static StringView convert_register_index_to_string(IntelGraphics::RegisterIndex index)
{
switch (index) {
case IntelGraphics::RegisterIndex::PipeAConf:
return "PipeAConf"sv;
case IntelGraphics::RegisterIndex::PipeBConf:
return "PipeBConf"sv;
case IntelGraphics::RegisterIndex::GMBusData:
return "GMBusData"sv;
case IntelGraphics::RegisterIndex::GMBusStatus:
return "GMBusStatus"sv;
case IntelGraphics::RegisterIndex::GMBusCommand:
return "GMBusCommand"sv;
case IntelGraphics::RegisterIndex::GMBusClock:
return "GMBusClock"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneAControl:
return "DisplayPlaneAControl"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneALinearOffset:
return "DisplayPlaneALinearOffset"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneAStride:
return "DisplayPlaneAStride"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneASurface:
return "DisplayPlaneASurface"sv;
case IntelGraphics::RegisterIndex::DPLLDivisorA0:
return "DPLLDivisorA0"sv;
case IntelGraphics::RegisterIndex::DPLLDivisorA1:
return "DPLLDivisorA1"sv;
case IntelGraphics::RegisterIndex::DPLLControlA:
return "DPLLControlA"sv;
case IntelGraphics::RegisterIndex::DPLLControlB:
return "DPLLControlB"sv;
case IntelGraphics::RegisterIndex::DPLLMultiplierA:
return "DPLLMultiplierA"sv;
case IntelGraphics::RegisterIndex::HTotalA:
return "HTotalA"sv;
case IntelGraphics::RegisterIndex::HBlankA:
return "HBlankA"sv;
case IntelGraphics::RegisterIndex::HSyncA:
return "HSyncA"sv;
case IntelGraphics::RegisterIndex::VTotalA:
return "VTotalA"sv;
case IntelGraphics::RegisterIndex::VBlankA:
return "VBlankA"sv;
case IntelGraphics::RegisterIndex::VSyncA:
return "VSyncA"sv;
case IntelGraphics::RegisterIndex::PipeASource:
return "PipeASource"sv;
case IntelGraphics::RegisterIndex::AnalogDisplayPort:
return "AnalogDisplayPort"sv;
case IntelGraphics::RegisterIndex::VGADisplayPlaneControl:
return "VGADisplayPlaneControl"sv;
default:
VERIFY_NOT_REACHED();
}
}
void IntelNativeDisplayConnector::write_to_register(IntelGraphics::RegisterIndex index, u32 value) const
{
VERIFY(m_control_lock.is_locked());
SpinlockLocker lock(m_registers_lock);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel Graphics Display Connector:: Write to {} value of {:x}", convert_register_index_to_string(index), value);
auto* reg = (u32 volatile*)m_registers_region->vaddr().offset(to_underlying(index)).as_ptr();
*reg = value;
}
u32 IntelNativeDisplayConnector::read_from_register(IntelGraphics::RegisterIndex index) const
{
VERIFY(m_control_lock.is_locked());
SpinlockLocker lock(m_registers_lock);
auto* reg = (u32 volatile*)m_registers_region->vaddr().offset(to_underlying(index)).as_ptr();
u32 value = *reg;
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel Graphics Display Connector: Read from {} value of {:x}", convert_register_index_to_string(index), value);
return value;
}
bool IntelNativeDisplayConnector::pipe_a_enabled() const
{
VERIFY(m_control_lock.is_locked());
return read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 30);
}
bool IntelNativeDisplayConnector::pipe_b_enabled() const
{
VERIFY(m_control_lock.is_locked());
return read_from_register(IntelGraphics::RegisterIndex::PipeBConf) & (1 << 30);
}
bool IntelNativeDisplayConnector::gmbus_wait_for(IntelGraphics::GMBusStatus desired_status, Optional<size_t> milliseconds_timeout)
{
VERIFY(m_control_lock.is_locked());
size_t milliseconds_passed = 0;
while (1) {
if (milliseconds_timeout.has_value() && milliseconds_timeout.value() < milliseconds_passed)
return false;
full_memory_barrier();
u32 status = read_from_register(IntelGraphics::RegisterIndex::GMBusStatus);
full_memory_barrier();
VERIFY(!(status & (1 << 10))); // error happened
switch (desired_status) {
case IntelGraphics::GMBusStatus::HardwareReady:
if (status & (1 << 11))
return true;
break;
case IntelGraphics::GMBusStatus::TransactionCompletion:
if (status & (1 << 14))
return true;
break;
default:
VERIFY_NOT_REACHED();
}
IO::delay(1000);
milliseconds_passed++;
}
}
void IntelNativeDisplayConnector::gmbus_write(unsigned address, u32 byte)
{
VERIFY(m_control_lock.is_locked());
VERIFY(address < 256);
full_memory_barrier();
write_to_register(IntelGraphics::RegisterIndex::GMBusData, byte);
full_memory_barrier();
write_to_register(IntelGraphics::RegisterIndex::GMBusCommand, ((address << 1) | (1 << 16) | (IntelGraphics::GMBusCycle::Wait << 25) | (1 << 30)));
full_memory_barrier();
gmbus_wait_for(IntelGraphics::GMBusStatus::TransactionCompletion, {});
}
void IntelNativeDisplayConnector::gmbus_read(unsigned address, u8* buf, size_t length)
{
VERIFY(address < 256);
VERIFY(m_control_lock.is_locked());
size_t nread = 0;
auto read_set = [&] {
full_memory_barrier();
u32 data = read_from_register(IntelGraphics::RegisterIndex::GMBusData);
full_memory_barrier();
for (size_t index = 0; index < 4; index++) {
if (nread == length)
break;
buf[nread] = (data >> (8 * index)) & 0xFF;
nread++;
}
};
full_memory_barrier();
write_to_register(IntelGraphics::RegisterIndex::GMBusCommand, (1 | (address << 1) | (length << 16) | (IntelGraphics::GMBusCycle::Wait << 25) | (1 << 30)));
full_memory_barrier();
while (nread < length) {
gmbus_wait_for(IntelGraphics::GMBusStatus::HardwareReady, {});
read_set();
}
gmbus_wait_for(IntelGraphics::GMBusStatus::TransactionCompletion, {});
}
void IntelNativeDisplayConnector::gmbus_read_edid()
{
Array<u8, 128> crt_edid_bytes {};
{
SpinlockLocker control_lock(m_control_lock);
gmbus_write(DDC2_I2C_ADDRESS, 0);
gmbus_read(DDC2_I2C_ADDRESS, (u8*)&crt_edid_bytes, sizeof(crt_edid_bytes));
// FIXME: It seems like the returned EDID is almost correct,
// but the first byte is set to 0xD0 instead of 0x00.
// For now, this "hack" works well enough.
crt_edid_bytes[0] = 0x0;
}
set_edid_bytes(crt_edid_bytes);
}
bool IntelNativeDisplayConnector::is_resolution_valid(size_t, size_t)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
// FIXME: Check that we are able to modeset to the requested resolution!
return true;
}
void IntelNativeDisplayConnector::disable_output()
{
VERIFY(m_control_lock.is_locked());
disable_dac_output();
disable_all_planes();
disable_pipe_a();
disable_pipe_b();
disable_dpll();
disable_vga_emulation();
}
void IntelNativeDisplayConnector::enable_output(PhysicalAddress fb_address, size_t width)
{
VERIFY(m_control_lock.is_locked());
VERIFY(!pipe_a_enabled());
enable_pipe_a();
enable_primary_plane(fb_address, width);
enable_dac_output();
}
static size_t compute_dac_multiplier(size_t pixel_clock_in_khz)
{
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel native graphics: Pixel clock is {} KHz", pixel_clock_in_khz);
VERIFY(pixel_clock_in_khz >= 25000);
if (pixel_clock_in_khz >= 100000) {
return 1;
} else if (pixel_clock_in_khz >= 50000) {
return 2;
} else {
return 4;
}
}
bool IntelNativeDisplayConnector::set_safe_crt_resolution()
{
VERIFY(m_control_lock.is_locked());
SpinlockLocker modeset_lock(m_modeset_lock);
// Note: Just in case we still allow access to VGA IO ports, disable it now.
GraphicsManagement::the().disable_vga_emulation_access_permanently();
// FIXME: Get the requested resolution from the EDID!!
auto modesetting = calculate_modesetting_from_edid(m_edid_parser.value(), 0);
disable_output();
auto dac_multiplier = compute_dac_multiplier(modesetting.pixel_clock_in_khz);
auto pll_settings = create_pll_settings((1000 * modesetting.pixel_clock_in_khz * dac_multiplier), 96'000'000, IntelGraphics::G35Limits);
if (!pll_settings.has_value())
VERIFY_NOT_REACHED();
auto settings = pll_settings.value();
dbgln_if(INTEL_GRAPHICS_DEBUG, "PLL settings for {} {} {} {} {}", settings.n, settings.m1, settings.m2, settings.p1, settings.p2);
enable_dpll_without_vga(pll_settings.value(), dac_multiplier);
set_display_timings(modesetting);
enable_output(m_framebuffer_address, modesetting.horizontal.blanking_start());
DisplayConnector::ModeSetting mode_set {
.horizontal_stride = modesetting.horizontal.blanking_start() * sizeof(u32),
.pixel_clock_in_khz = 0,
.horizontal_active = modesetting.horizontal.blanking_start(),
.horizontal_front_porch_pixels = 0,
.horizontal_sync_time_pixels = 0,
.horizontal_blank_pixels = 0,
.vertical_active = modesetting.vertical.blanking_start(),
.vertical_front_porch_lines = 0,
.vertical_sync_time_lines = 0,
.vertical_blank_lines = 0,
.horizontal_offset = 0,
.vertical_offset = 0,
};
m_current_mode_setting = mode_set;
auto rounded_size = MUST(Memory::page_round_up(m_current_mode_setting.vertical_active * m_current_mode_setting.horizontal_stride));
m_framebuffer_region = MUST(MM.allocate_kernel_region(m_framebuffer_address, rounded_size, "Intel Native Graphics Framebuffer", Memory::Region::Access::ReadWrite));
m_framebuffer_data = m_framebuffer_region->vaddr().offset(m_framebuffer_address.offset_in_page()).as_ptr();
if (m_framebuffer_console)
m_framebuffer_console->set_resolution(m_current_mode_setting.horizontal_active, m_current_mode_setting.vertical_active, m_current_mode_setting.horizontal_stride);
return true;
}
void IntelNativeDisplayConnector::set_display_timings(Graphics::Modesetting const& modesetting)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 31)));
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 30)));
dbgln_if(INTEL_GRAPHICS_DEBUG, "htotal - {}, {}", (modesetting.horizontal.active - 1), (modesetting.horizontal.total - 1));
write_to_register(IntelGraphics::RegisterIndex::HTotalA, (modesetting.horizontal.active - 1) | (modesetting.horizontal.total - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "hblank - {}, {}", (modesetting.horizontal.blanking_start() - 1), (modesetting.horizontal.blanking_end() - 1));
write_to_register(IntelGraphics::RegisterIndex::HBlankA, (modesetting.horizontal.blanking_start() - 1) | (modesetting.horizontal.blanking_end() - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "hsync - {}, {}", (modesetting.horizontal.sync_start - 1), (modesetting.horizontal.sync_end - 1));
write_to_register(IntelGraphics::RegisterIndex::HSyncA, (modesetting.horizontal.sync_start - 1) | (modesetting.horizontal.sync_end - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "vtotal - {}, {}", (modesetting.vertical.active - 1), (modesetting.vertical.total - 1));
write_to_register(IntelGraphics::RegisterIndex::VTotalA, (modesetting.vertical.active - 1) | (modesetting.vertical.total - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "vblank - {}, {}", (modesetting.vertical.blanking_start() - 1), (modesetting.vertical.blanking_end() - 1));
write_to_register(IntelGraphics::RegisterIndex::VBlankA, (modesetting.vertical.blanking_start() - 1) | (modesetting.vertical.blanking_end() - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "vsync - {}, {}", (modesetting.vertical.sync_start - 1), (modesetting.vertical.sync_end - 1));
write_to_register(IntelGraphics::RegisterIndex::VSyncA, (modesetting.vertical.sync_start - 1) | (modesetting.vertical.sync_end - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "sourceSize - {}, {}", (modesetting.vertical.active - 1), (modesetting.horizontal.active - 1));
write_to_register(IntelGraphics::RegisterIndex::PipeASource, (modesetting.vertical.active - 1) | (modesetting.horizontal.active - 1) << 16);
IO::delay(200);
}
bool IntelNativeDisplayConnector::wait_for_enabled_pipe_a(size_t milliseconds_timeout) const
{
size_t current_time = 0;
while (current_time < milliseconds_timeout) {
if (pipe_a_enabled())
return true;
IO::delay(1000);
current_time++;
}
return false;
}
bool IntelNativeDisplayConnector::wait_for_disabled_pipe_a(size_t milliseconds_timeout) const
{
size_t current_time = 0;
while (current_time < milliseconds_timeout) {
if (!pipe_a_enabled())
return true;
IO::delay(1000);
current_time++;
}
return false;
}
bool IntelNativeDisplayConnector::wait_for_disabled_pipe_b(size_t milliseconds_timeout) const
{
size_t current_time = 0;
while (current_time < milliseconds_timeout) {
if (!pipe_b_enabled())
return true;
IO::delay(1000);
current_time++;
}
return false;
}
void IntelNativeDisplayConnector::disable_dpll()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::DPLLControlA, 0);
write_to_register(IntelGraphics::RegisterIndex::DPLLControlB, 0);
}
void IntelNativeDisplayConnector::disable_pipe_a()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::PipeAConf, 0);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe A");
wait_for_disabled_pipe_a(100);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe A - done.");
}
void IntelNativeDisplayConnector::disable_pipe_b()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::PipeAConf, 0);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe B");
wait_for_disabled_pipe_b(100);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe B - done.");
}
void IntelNativeDisplayConnector::set_gmbus_default_rate()
{
// FIXME: Verify GMBUS Rate Select is set only when GMBUS is idle
VERIFY(m_control_lock.is_locked());
// Set the rate to 100KHz
write_to_register(IntelGraphics::RegisterIndex::GMBusClock, read_from_register(IntelGraphics::RegisterIndex::GMBusClock) & ~(0b111 << 8));
}
void IntelNativeDisplayConnector::enable_pipe_a()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 31)));
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 30)));
write_to_register(IntelGraphics::RegisterIndex::PipeAConf, (1 << 31) | (1 << 24));
dbgln_if(INTEL_GRAPHICS_DEBUG, "enabling Pipe A");
// FIXME: Seems like my video card is buggy and doesn't set the enabled bit (bit 30)!!
wait_for_enabled_pipe_a(100);
dbgln_if(INTEL_GRAPHICS_DEBUG, "enabling Pipe A - done.");
}
void IntelNativeDisplayConnector::enable_primary_plane(PhysicalAddress fb_address, size_t width)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
VERIFY(((width * 4) % 64 == 0));
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneAStride, width * 4);
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneALinearOffset, 0);
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneASurface, fb_address.get());
// FIXME: Serenity uses BGR 32 bit pixel format, but maybe we should try to determine it somehow!
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneAControl, (0b0110 << 26) | (1 << 31));
}
void IntelNativeDisplayConnector::set_dpll_registers(IntelGraphics::PLLSettings const& settings)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::DPLLDivisorA0, (settings.m2 - 2) | ((settings.m1 - 2) << 8) | ((settings.n - 2) << 16));
write_to_register(IntelGraphics::RegisterIndex::DPLLDivisorA1, (settings.m2 - 2) | ((settings.m1 - 2) << 8) | ((settings.n - 2) << 16));
write_to_register(IntelGraphics::RegisterIndex::DPLLControlA, 0);
}
void IntelNativeDisplayConnector::enable_dpll_without_vga(IntelGraphics::PLLSettings const& settings, size_t dac_multiplier)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
set_dpll_registers(settings);
IO::delay(200);
write_to_register(IntelGraphics::RegisterIndex::DPLLControlA, (6 << 9) | (settings.p1) << 16 | (1 << 26) | (1 << 28) | (1 << 31));
write_to_register(IntelGraphics::RegisterIndex::DPLLMultiplierA, (dac_multiplier - 1) | ((dac_multiplier - 1) << 8));
// The specification says we should wait (at least) about 150 microseconds
// after enabling the DPLL to allow the clock to stabilize
IO::delay(200);
VERIFY(read_from_register(IntelGraphics::RegisterIndex::DPLLControlA) & (1 << 31));
}
void IntelNativeDisplayConnector::set_gmbus_pin_pair(IntelGraphics::GMBusPinPair pin_pair)
{
// FIXME: Verify GMBUS is idle
VERIFY(m_control_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::GMBusClock, (read_from_register(IntelGraphics::RegisterIndex::GMBusClock) & (~0b111)) | (pin_pair & 0b111));
}
void IntelNativeDisplayConnector::disable_dac_output()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::AnalogDisplayPort, 0b11 << 10);
}
void IntelNativeDisplayConnector::enable_dac_output()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::AnalogDisplayPort, (1 << 31));
}
void IntelNativeDisplayConnector::disable_vga_emulation()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::VGADisplayPlaneControl, (1 << 31));
read_from_register(IntelGraphics::RegisterIndex::VGADisplayPlaneControl);
}
void IntelNativeDisplayConnector::disable_all_planes()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneAControl, 0);
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneBControl, 0);
}
}

View file

@ -0,0 +1,167 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/RefPtr.h>
#include <AK/Try.h>
#include <Kernel/Graphics/Console/GenericFramebufferConsole.h>
#include <Kernel/Graphics/Definitions.h>
#include <Kernel/Graphics/DisplayConnector.h>
#include <Kernel/Memory/TypedMapping.h>
namespace Kernel {
namespace IntelGraphics {
enum class RegisterIndex {
PipeAConf = 0x70008,
PipeBConf = 0x71008,
GMBusData = 0x510C,
GMBusStatus = 0x5108,
GMBusCommand = 0x5104,
GMBusClock = 0x5100,
DisplayPlaneAControl = 0x70180,
DisplayPlaneBControl = 0x71180,
DisplayPlaneALinearOffset = 0x70184,
DisplayPlaneAStride = 0x70188,
DisplayPlaneASurface = 0x7019C,
DPLLDivisorA0 = 0x6040,
DPLLDivisorA1 = 0x6044,
DPLLControlA = 0x6014,
DPLLControlB = 0x6018,
DPLLMultiplierA = 0x601C,
HTotalA = 0x60000,
HBlankA = 0x60004,
HSyncA = 0x60008,
VTotalA = 0x6000C,
VBlankA = 0x60010,
VSyncA = 0x60014,
PipeASource = 0x6001C,
AnalogDisplayPort = 0x61100,
VGADisplayPlaneControl = 0x71400,
};
struct PLLSettings;
struct PLLParameterLimit {
size_t min, max;
};
struct PLLMaxSettings {
PLLParameterLimit dot_clock, vco, n, m, m1, m2, p, p1, p2;
};
enum GMBusPinPair : u8 {
None = 0,
DedicatedControl = 1,
DedicatedAnalog = 0b10,
IntegratedDigital = 0b11,
sDVO = 0b101,
Dconnector = 0b111,
};
enum class GMBusStatus {
TransactionCompletion,
HardwareReady,
};
enum GMBusCycle {
Wait = 1,
Stop = 4,
};
}
class IntelNativeDisplayConnector final
: public DisplayConnector {
friend class IntelNativeGraphicsAdapter;
friend class DeviceManagement;
public:
static NonnullRefPtr<IntelNativeDisplayConnector> must_create(PhysicalAddress framebuffer_address, PhysicalAddress registers_region_address, size_t registers_region_length);
private:
// ^DisplayConnector
// FIXME: Implement modesetting capabilities in runtime from userland...
virtual bool mutable_mode_setting_capable() const override { return false; }
// FIXME: Implement double buffering capabilities in runtime from userland...
virtual bool double_framebuffering_capable() const override { return false; }
virtual ErrorOr<void> set_mode_setting(ModeSetting const&) override;
virtual ErrorOr<void> set_safe_mode_setting() override;
virtual ErrorOr<void> set_y_offset(size_t y) override;
virtual ErrorOr<void> unblank() override;
virtual ErrorOr<size_t> write_to_first_surface(u64 offset, UserOrKernelBuffer const&, size_t length) override final;
virtual ErrorOr<void> flush_first_surface() override final;
virtual void enable_console() override;
virtual void disable_console() override;
virtual bool partial_flush_support() const override { return false; }
virtual bool flush_support() const override { return false; }
// Note: Paravirtualized hardware doesn't require a defined refresh rate for modesetting.
virtual bool refresh_rate_support() const override { return true; }
ErrorOr<void> initialize_gmbus_settings_and_read_edid();
IntelNativeDisplayConnector(PhysicalAddress framebuffer_address, NonnullOwnPtr<Memory::Region> registers_region);
ErrorOr<void> create_attached_framebuffer_console();
void write_to_register(IntelGraphics::RegisterIndex, u32 value) const;
u32 read_from_register(IntelGraphics::RegisterIndex) const;
bool pipe_a_enabled() const;
bool pipe_b_enabled() const;
bool is_resolution_valid(size_t width, size_t height);
bool set_safe_crt_resolution();
void disable_output();
void enable_output(PhysicalAddress fb_address, size_t width);
void disable_vga_emulation();
void enable_vga_plane();
void disable_dac_output();
void enable_dac_output();
void disable_all_planes();
void disable_pipe_a();
void disable_pipe_b();
void disable_dpll();
void set_dpll_registers(IntelGraphics::PLLSettings const&);
void enable_dpll_without_vga(IntelGraphics::PLLSettings const&, size_t dac_multiplier);
void set_display_timings(Graphics::Modesetting const&);
void enable_pipe_a();
void set_framebuffer_parameters(size_t, size_t);
void enable_primary_plane(PhysicalAddress fb_address, size_t stride);
bool wait_for_enabled_pipe_a(size_t milliseconds_timeout) const;
bool wait_for_disabled_pipe_a(size_t milliseconds_timeout) const;
bool wait_for_disabled_pipe_b(size_t milliseconds_timeout) const;
void set_gmbus_default_rate();
void set_gmbus_pin_pair(IntelGraphics::GMBusPinPair pin_pair);
// FIXME: It would be better if we generalize the I2C access later on
void gmbus_read_edid();
void gmbus_write(unsigned address, u32 byte);
void gmbus_read(unsigned address, u8* buf, size_t length);
bool gmbus_wait_for(IntelGraphics::GMBusStatus desired_status, Optional<size_t> milliseconds_timeout);
Optional<IntelGraphics::PLLSettings> create_pll_settings(u64 target_frequency, u64 reference_clock, IntelGraphics::PLLMaxSettings const&);
mutable Spinlock m_registers_lock;
const PhysicalAddress m_framebuffer_address;
RefPtr<Graphics::GenericFramebufferConsole> m_framebuffer_console;
OwnPtr<Memory::Region> m_framebuffer_region;
u8* m_framebuffer_data {};
const PhysicalAddress m_registers;
NonnullOwnPtr<Memory::Region> m_registers_region;
};
}

View file

@ -14,18 +14,6 @@
namespace Kernel {
static constexpr IntelNativeGraphicsAdapter::PLLMaxSettings G35Limits {
{ 20'000'000, 400'000'000 }, // values in Hz, dot_clock
{ 1'400'000'000, 2'800'000'000 }, // values in Hz, VCO
{ 3, 8 }, // n
{ 70, 120 }, // m
{ 10, 20 }, // m1
{ 5, 9 }, // m2
{ 5, 80 }, // p
{ 1, 8 }, // p1
{ 5, 10 } // p2
};
static constexpr u16 supported_models[] {
0x29c2, // Intel G35 Adapter
};
@ -39,643 +27,34 @@ static bool is_supported_model(u16 device_id)
return false;
}
#define DDC2_I2C_ADDRESS 0x50
RefPtr<IntelNativeGraphicsAdapter> IntelNativeGraphicsAdapter::initialize(PCI::DeviceIdentifier const& pci_device_identifier)
{
VERIFY(pci_device_identifier.hardware_id().vendor_id == 0x8086);
if (!is_supported_model(pci_device_identifier.hardware_id().device_id))
return {};
return adopt_ref(*new IntelNativeGraphicsAdapter(pci_device_identifier.address()));
auto adapter = adopt_ref(*new IntelNativeGraphicsAdapter(pci_device_identifier.address()));
MUST(adapter->initialize_adapter());
return adapter;
}
static size_t compute_dac_multiplier(size_t pixel_clock_in_khz)
{
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel native graphics: Pixel clock is {} KHz", pixel_clock_in_khz);
VERIFY(pixel_clock_in_khz >= 25000);
if (pixel_clock_in_khz >= 100000) {
return 1;
} else if (pixel_clock_in_khz >= 50000) {
return 2;
} else {
return 4;
}
}
static Graphics::Modesetting calculate_modesetting_from_edid(EDID::Parser& edid, size_t index)
{
auto details = edid.detailed_timing(index).release_value();
Graphics::Modesetting mode;
VERIFY(details.pixel_clock_khz());
mode.pixel_clock_in_khz = details.pixel_clock_khz();
size_t horizontal_active = details.horizontal_addressable_pixels();
size_t horizontal_sync_offset = details.horizontal_front_porch_pixels();
mode.horizontal.active = horizontal_active;
mode.horizontal.sync_start = horizontal_active + horizontal_sync_offset;
mode.horizontal.sync_end = horizontal_active + horizontal_sync_offset + details.horizontal_sync_pulse_width_pixels();
mode.horizontal.total = horizontal_active + details.horizontal_blanking_pixels();
size_t vertical_active = details.vertical_addressable_lines();
size_t vertical_sync_offset = details.vertical_front_porch_lines();
mode.vertical.active = vertical_active;
mode.vertical.sync_start = vertical_active + vertical_sync_offset;
mode.vertical.sync_end = vertical_active + vertical_sync_offset + details.vertical_sync_pulse_width_lines();
mode.vertical.total = vertical_active + details.vertical_blanking_lines();
return mode;
}
static bool check_pll_settings(IntelNativeGraphicsAdapter::PLLSettings const& settings, size_t reference_clock, IntelNativeGraphicsAdapter::PLLMaxSettings const& limits)
{
if (settings.n < limits.n.min || settings.n > limits.n.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "N is invalid {}", settings.n);
return false;
}
if (settings.m1 < limits.m1.min || settings.m1 > limits.m1.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m1 is invalid {}", settings.m1);
return false;
}
if (settings.m2 < limits.m2.min || settings.m2 > limits.m2.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m2 is invalid {}", settings.m2);
return false;
}
if (settings.p1 < limits.p1.min || settings.p1 > limits.p1.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "p1 is invalid {}", settings.p1);
return false;
}
if (settings.m1 <= settings.m2) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m2 is invalid {} as it is bigger than m1 {}", settings.m2, settings.m1);
return false;
}
auto m = settings.compute_m();
auto p = settings.compute_p();
if (m < limits.m.min || m > limits.m.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "m invalid {}", m);
return false;
}
if (p < limits.p.min || p > limits.p.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "p invalid {}", p);
return false;
}
auto dot = settings.compute_dot_clock(reference_clock);
auto vco = settings.compute_vco(reference_clock);
if (dot < limits.dot_clock.min || dot > limits.dot_clock.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "Dot clock invalid {}", dot);
return false;
}
if (vco < limits.vco.min || vco > limits.vco.max) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "VCO clock invalid {}", vco);
return false;
}
return true;
}
static size_t find_absolute_difference(u64 target_frequency, u64 checked_frequency)
{
if (target_frequency >= checked_frequency)
return target_frequency - checked_frequency;
return checked_frequency - target_frequency;
}
Optional<IntelNativeGraphicsAdapter::PLLSettings> IntelNativeGraphicsAdapter::create_pll_settings(u64 target_frequency, u64 reference_clock, PLLMaxSettings const& limits)
{
IntelNativeGraphicsAdapter::PLLSettings settings;
IntelNativeGraphicsAdapter::PLLSettings best_settings;
// FIXME: Is this correct for all Intel Native graphics cards?
settings.p2 = 10;
dbgln_if(INTEL_GRAPHICS_DEBUG, "Check PLL settings for ref clock of {} Hz, for target of {} Hz", reference_clock, target_frequency);
u64 best_difference = 0xffffffff;
for (settings.n = limits.n.min; settings.n <= limits.n.max; ++settings.n) {
for (settings.m1 = limits.m1.max; settings.m1 >= limits.m1.min; --settings.m1) {
for (settings.m2 = limits.m2.max; settings.m2 >= limits.m2.min; --settings.m2) {
for (settings.p1 = limits.p1.max; settings.p1 >= limits.p1.min; --settings.p1) {
dbgln_if(INTEL_GRAPHICS_DEBUG, "Check PLL settings for {} {} {} {} {}", settings.n, settings.m1, settings.m2, settings.p1, settings.p2);
if (!check_pll_settings(settings, reference_clock, limits))
continue;
auto current_dot_clock = settings.compute_dot_clock(reference_clock);
if (current_dot_clock == target_frequency)
return settings;
auto difference = find_absolute_difference(target_frequency, current_dot_clock);
if (difference < best_difference && (current_dot_clock > target_frequency)) {
best_settings = settings;
best_difference = difference;
}
}
}
}
}
if (best_settings.is_valid())
return best_settings;
return {};
}
IntelNativeGraphicsAdapter::IntelNativeGraphicsAdapter(PCI::Address address)
: PCIVGACompatibleAdapter(address)
, m_registers(PCI::get_BAR0(address) & 0xfffffffc)
, m_framebuffer_addr(PCI::get_BAR2(address) & 0xfffffffc)
ErrorOr<void> IntelNativeGraphicsAdapter::initialize_adapter()
{
auto address = pci_address();
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel Native Graphics Adapter @ {}", address);
auto bar0_space_size = PCI::get_BAR_space_size(address, 0);
VERIFY(bar0_space_size == 0x80000);
dmesgln("Intel Native Graphics Adapter @ {}, MMIO @ {}, space size is {:x} bytes", address, PhysicalAddress(PCI::get_BAR0(address)), bar0_space_size);
dmesgln("Intel Native Graphics Adapter @ {}, framebuffer @ {}", address, PhysicalAddress(PCI::get_BAR2(address)));
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(PCI::get_BAR0(address)).page_base(), bar0_space_size, "Intel Native Graphics Registers", Memory::Region::Access::ReadWrite);
if (region_or_error.is_error()) {
TODO();
}
m_registers_region = region_or_error.release_value();
PCI::enable_bus_mastering(address);
{
SpinlockLocker control_lock(m_control_lock);
set_gmbus_default_rate();
set_gmbus_pin_pair(GMBusPinPair::DedicatedAnalog);
}
gmbus_read_edid();
auto modesetting = calculate_modesetting_from_edid(m_crt_edid.value(), 0);
dmesgln("Intel Native Graphics Adapter @ {}, preferred resolution is {:d}x{:d}", pci_address(), modesetting.horizontal.active, modesetting.vertical.active);
set_crt_resolution(modesetting.horizontal.active, modesetting.vertical.active);
auto framebuffer_address = PhysicalAddress(PCI::get_BAR2(pci_address()) & 0xfffffff0);
VERIFY(!framebuffer_address.is_null());
VERIFY(m_framebuffer_pitch != 0);
VERIFY(m_framebuffer_height != 0);
VERIFY(m_framebuffer_width != 0);
m_framebuffer_console = Graphics::ContiguousFramebufferConsole::initialize(framebuffer_address, m_framebuffer_width, m_framebuffer_height, m_framebuffer_pitch);
GraphicsManagement::the().set_console(*m_framebuffer_console);
m_display_connector = IntelNativeDisplayConnector::must_create(PhysicalAddress(PCI::get_BAR2(address) & 0xfffffff0), PhysicalAddress(PCI::get_BAR0(address) & 0xfffffff0), bar0_space_size);
return {};
}
void IntelNativeGraphicsAdapter::enable_vga_plane()
IntelNativeGraphicsAdapter::IntelNativeGraphicsAdapter(PCI::Address address)
: GenericGraphicsAdapter()
, PCI::Device(address)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
}
[[maybe_unused]] static StringView convert_register_index_to_string(IntelGraphics::RegisterIndex index)
{
switch (index) {
case IntelGraphics::RegisterIndex::PipeAConf:
return "PipeAConf"sv;
case IntelGraphics::RegisterIndex::PipeBConf:
return "PipeBConf"sv;
case IntelGraphics::RegisterIndex::GMBusData:
return "GMBusData"sv;
case IntelGraphics::RegisterIndex::GMBusStatus:
return "GMBusStatus"sv;
case IntelGraphics::RegisterIndex::GMBusCommand:
return "GMBusCommand"sv;
case IntelGraphics::RegisterIndex::GMBusClock:
return "GMBusClock"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneAControl:
return "DisplayPlaneAControl"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneALinearOffset:
return "DisplayPlaneALinearOffset"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneAStride:
return "DisplayPlaneAStride"sv;
case IntelGraphics::RegisterIndex::DisplayPlaneASurface:
return "DisplayPlaneASurface"sv;
case IntelGraphics::RegisterIndex::DPLLDivisorA0:
return "DPLLDivisorA0"sv;
case IntelGraphics::RegisterIndex::DPLLDivisorA1:
return "DPLLDivisorA1"sv;
case IntelGraphics::RegisterIndex::DPLLControlA:
return "DPLLControlA"sv;
case IntelGraphics::RegisterIndex::DPLLControlB:
return "DPLLControlB"sv;
case IntelGraphics::RegisterIndex::DPLLMultiplierA:
return "DPLLMultiplierA"sv;
case IntelGraphics::RegisterIndex::HTotalA:
return "HTotalA"sv;
case IntelGraphics::RegisterIndex::HBlankA:
return "HBlankA"sv;
case IntelGraphics::RegisterIndex::HSyncA:
return "HSyncA"sv;
case IntelGraphics::RegisterIndex::VTotalA:
return "VTotalA"sv;
case IntelGraphics::RegisterIndex::VBlankA:
return "VBlankA"sv;
case IntelGraphics::RegisterIndex::VSyncA:
return "VSyncA"sv;
case IntelGraphics::RegisterIndex::PipeASource:
return "PipeASource"sv;
case IntelGraphics::RegisterIndex::AnalogDisplayPort:
return "AnalogDisplayPort"sv;
case IntelGraphics::RegisterIndex::VGADisplayPlaneControl:
return "VGADisplayPlaneControl"sv;
default:
VERIFY_NOT_REACHED();
}
}
void IntelNativeGraphicsAdapter::write_to_register(IntelGraphics::RegisterIndex index, u32 value) const
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_registers_region);
SpinlockLocker lock(m_registers_lock);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel Graphics {}: Write to {} value of {:x}", pci_address(), convert_register_index_to_string(index), value);
auto* reg = (u32 volatile*)m_registers_region->vaddr().offset(index).as_ptr();
*reg = value;
}
u32 IntelNativeGraphicsAdapter::read_from_register(IntelGraphics::RegisterIndex index) const
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_registers_region);
SpinlockLocker lock(m_registers_lock);
auto* reg = (u32 volatile*)m_registers_region->vaddr().offset(index).as_ptr();
u32 value = *reg;
dbgln_if(INTEL_GRAPHICS_DEBUG, "Intel Graphics {}: Read from {} value of {:x}", pci_address(), convert_register_index_to_string(index), value);
return value;
}
bool IntelNativeGraphicsAdapter::pipe_a_enabled() const
{
VERIFY(m_control_lock.is_locked());
return read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 30);
}
bool IntelNativeGraphicsAdapter::pipe_b_enabled() const
{
VERIFY(m_control_lock.is_locked());
return read_from_register(IntelGraphics::RegisterIndex::PipeBConf) & (1 << 30);
}
bool IntelNativeGraphicsAdapter::gmbus_wait_for(GMBusStatus desired_status, Optional<size_t> milliseconds_timeout)
{
VERIFY(m_control_lock.is_locked());
size_t milliseconds_passed = 0;
while (1) {
if (milliseconds_timeout.has_value() && milliseconds_timeout.value() < milliseconds_passed)
return false;
full_memory_barrier();
u32 status = read_from_register(IntelGraphics::RegisterIndex::GMBusStatus);
full_memory_barrier();
VERIFY(!(status & (1 << 10))); // error happened
switch (desired_status) {
case GMBusStatus::HardwareReady:
if (status & (1 << 11))
return true;
break;
case GMBusStatus::TransactionCompletion:
if (status & (1 << 14))
return true;
break;
default:
VERIFY_NOT_REACHED();
}
IO::delay(1000);
milliseconds_passed++;
}
}
void IntelNativeGraphicsAdapter::gmbus_write(unsigned address, u32 byte)
{
VERIFY(m_control_lock.is_locked());
VERIFY(address < 256);
full_memory_barrier();
write_to_register(IntelGraphics::RegisterIndex::GMBusData, byte);
full_memory_barrier();
write_to_register(IntelGraphics::RegisterIndex::GMBusCommand, ((address << 1) | (1 << 16) | (GMBusCycle::Wait << 25) | (1 << 30)));
full_memory_barrier();
gmbus_wait_for(GMBusStatus::TransactionCompletion, {});
}
void IntelNativeGraphicsAdapter::gmbus_read(unsigned address, u8* buf, size_t length)
{
VERIFY(address < 256);
VERIFY(m_control_lock.is_locked());
size_t nread = 0;
auto read_set = [&] {
full_memory_barrier();
u32 data = read_from_register(IntelGraphics::RegisterIndex::GMBusData);
full_memory_barrier();
for (size_t index = 0; index < 4; index++) {
if (nread == length)
break;
buf[nread] = (data >> (8 * index)) & 0xFF;
nread++;
}
};
full_memory_barrier();
write_to_register(IntelGraphics::RegisterIndex::GMBusCommand, (1 | (address << 1) | (length << 16) | (GMBusCycle::Wait << 25) | (1 << 30)));
full_memory_barrier();
while (nread < length) {
gmbus_wait_for(GMBusStatus::HardwareReady, {});
read_set();
}
gmbus_wait_for(GMBusStatus::TransactionCompletion, {});
}
void IntelNativeGraphicsAdapter::gmbus_read_edid()
{
{
SpinlockLocker control_lock(m_control_lock);
gmbus_write(DDC2_I2C_ADDRESS, 0);
gmbus_read(DDC2_I2C_ADDRESS, (u8*)&m_crt_edid_bytes, sizeof(m_crt_edid_bytes));
// FIXME: It seems like the returned EDID is almost correct,
// but the first byte is set to 0xD0 instead of 0x00.
// For now, this "hack" works well enough.
m_crt_edid_bytes[0] = 0x0;
}
if (auto parsed_edid = EDID::Parser::from_bytes({ m_crt_edid_bytes, sizeof(m_crt_edid_bytes) }); !parsed_edid.is_error()) {
m_crt_edid = parsed_edid.release_value();
} else {
for (size_t x = 0; x < 128; x = x + 16) {
dmesgln("IntelNativeGraphicsAdapter: Print offending EDID");
dmesgln("{:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x} {:02x}",
m_crt_edid_bytes[x], m_crt_edid_bytes[x + 1], m_crt_edid_bytes[x + 2], m_crt_edid_bytes[x + 3],
m_crt_edid_bytes[x + 4], m_crt_edid_bytes[x + 5], m_crt_edid_bytes[x + 6], m_crt_edid_bytes[x + 7],
m_crt_edid_bytes[x + 8], m_crt_edid_bytes[x + 9], m_crt_edid_bytes[x + 10], m_crt_edid_bytes[x + 11],
m_crt_edid_bytes[x + 12], m_crt_edid_bytes[x + 13], m_crt_edid_bytes[x + 14], m_crt_edid_bytes[x + 15]);
}
dmesgln("IntelNativeGraphicsAdapter: Parsing EDID failed: {}", parsed_edid.error());
m_crt_edid = {};
}
}
bool IntelNativeGraphicsAdapter::is_resolution_valid(size_t, size_t)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
// FIXME: Check that we are able to modeset to the requested resolution!
return true;
}
void IntelNativeGraphicsAdapter::disable_output()
{
VERIFY(m_control_lock.is_locked());
disable_dac_output();
disable_all_planes();
disable_pipe_a();
disable_pipe_b();
disable_vga_emulation();
disable_dpll();
}
void IntelNativeGraphicsAdapter::enable_output(PhysicalAddress fb_address, size_t width)
{
VERIFY(m_control_lock.is_locked());
VERIFY(!pipe_a_enabled());
enable_pipe_a();
enable_primary_plane(fb_address, width);
enable_dac_output();
}
bool IntelNativeGraphicsAdapter::set_crt_resolution(size_t width, size_t height)
{
SpinlockLocker control_lock(m_control_lock);
SpinlockLocker modeset_lock(m_modeset_lock);
if (!is_resolution_valid(width, height)) {
return false;
}
// FIXME: Get the requested resolution from the EDID!!
auto modesetting = calculate_modesetting_from_edid(m_crt_edid.value(), 0);
disable_output();
auto dac_multiplier = compute_dac_multiplier(modesetting.pixel_clock_in_khz);
auto pll_settings = create_pll_settings((1000 * modesetting.pixel_clock_in_khz * dac_multiplier), 96'000'000, G35Limits);
if (!pll_settings.has_value())
VERIFY_NOT_REACHED();
auto settings = pll_settings.value();
dbgln_if(INTEL_GRAPHICS_DEBUG, "PLL settings for {} {} {} {} {}", settings.n, settings.m1, settings.m2, settings.p1, settings.p2);
enable_dpll_without_vga(pll_settings.value(), dac_multiplier);
set_display_timings(modesetting);
auto address = PhysicalAddress(PCI::get_BAR2(pci_address()) & 0xfffffff0);
VERIFY(!address.is_null());
enable_output(address, width);
m_framebuffer_width = width;
m_framebuffer_height = height;
m_framebuffer_pitch = width * 4;
return true;
}
void IntelNativeGraphicsAdapter::set_display_timings(Graphics::Modesetting const& modesetting)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 31)));
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 30)));
dbgln_if(INTEL_GRAPHICS_DEBUG, "htotal - {}, {}", (modesetting.horizontal.active - 1), (modesetting.horizontal.total - 1));
write_to_register(IntelGraphics::RegisterIndex::HTotalA, (modesetting.horizontal.active - 1) | (modesetting.horizontal.total - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "hblank - {}, {}", (modesetting.horizontal.blanking_start() - 1), (modesetting.horizontal.blanking_end() - 1));
write_to_register(IntelGraphics::RegisterIndex::HBlankA, (modesetting.horizontal.blanking_start() - 1) | (modesetting.horizontal.blanking_end() - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "hsync - {}, {}", (modesetting.horizontal.sync_start - 1), (modesetting.horizontal.sync_end - 1));
write_to_register(IntelGraphics::RegisterIndex::HSyncA, (modesetting.horizontal.sync_start - 1) | (modesetting.horizontal.sync_end - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "vtotal - {}, {}", (modesetting.vertical.active - 1), (modesetting.vertical.total - 1));
write_to_register(IntelGraphics::RegisterIndex::VTotalA, (modesetting.vertical.active - 1) | (modesetting.vertical.total - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "vblank - {}, {}", (modesetting.vertical.blanking_start() - 1), (modesetting.vertical.blanking_end() - 1));
write_to_register(IntelGraphics::RegisterIndex::VBlankA, (modesetting.vertical.blanking_start() - 1) | (modesetting.vertical.blanking_end() - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "vsync - {}, {}", (modesetting.vertical.sync_start - 1), (modesetting.vertical.sync_end - 1));
write_to_register(IntelGraphics::RegisterIndex::VSyncA, (modesetting.vertical.sync_start - 1) | (modesetting.vertical.sync_end - 1) << 16);
dbgln_if(INTEL_GRAPHICS_DEBUG, "sourceSize - {}, {}", (modesetting.vertical.active - 1), (modesetting.horizontal.active - 1));
write_to_register(IntelGraphics::RegisterIndex::PipeASource, (modesetting.vertical.active - 1) | (modesetting.horizontal.active - 1) << 16);
IO::delay(200);
}
bool IntelNativeGraphicsAdapter::wait_for_enabled_pipe_a(size_t milliseconds_timeout) const
{
size_t current_time = 0;
while (current_time < milliseconds_timeout) {
if (pipe_a_enabled())
return true;
IO::delay(1000);
current_time++;
}
return false;
}
bool IntelNativeGraphicsAdapter::wait_for_disabled_pipe_a(size_t milliseconds_timeout) const
{
size_t current_time = 0;
while (current_time < milliseconds_timeout) {
if (!pipe_a_enabled())
return true;
IO::delay(1000);
current_time++;
}
return false;
}
bool IntelNativeGraphicsAdapter::wait_for_disabled_pipe_b(size_t milliseconds_timeout) const
{
size_t current_time = 0;
while (current_time < milliseconds_timeout) {
if (!pipe_b_enabled())
return true;
IO::delay(1000);
current_time++;
}
return false;
}
void IntelNativeGraphicsAdapter::disable_dpll()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::DPLLControlA, read_from_register(IntelGraphics::RegisterIndex::DPLLControlA) & ~0x80000000);
write_to_register(IntelGraphics::RegisterIndex::DPLLControlB, read_from_register(IntelGraphics::RegisterIndex::DPLLControlB) & ~0x80000000);
}
void IntelNativeGraphicsAdapter::disable_pipe_a()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::PipeAConf, read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & ~0x80000000);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe A");
wait_for_disabled_pipe_a(100);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe A - done.");
}
void IntelNativeGraphicsAdapter::disable_pipe_b()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::PipeAConf, read_from_register(IntelGraphics::RegisterIndex::PipeBConf) & ~0x80000000);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe B");
wait_for_disabled_pipe_b(100);
dbgln_if(INTEL_GRAPHICS_DEBUG, "Disabling Pipe B - done.");
}
void IntelNativeGraphicsAdapter::set_gmbus_default_rate()
{
// FIXME: Verify GMBUS Rate Select is set only when GMBUS is idle
VERIFY(m_control_lock.is_locked());
// Set the rate to 100KHz
write_to_register(IntelGraphics::RegisterIndex::GMBusClock, read_from_register(IntelGraphics::RegisterIndex::GMBusClock) & ~(0b111 << 8));
}
void IntelNativeGraphicsAdapter::enable_pipe_a()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 31)));
VERIFY(!(read_from_register(IntelGraphics::RegisterIndex::PipeAConf) & (1 << 30)));
write_to_register(IntelGraphics::RegisterIndex::PipeAConf, read_from_register(IntelGraphics::RegisterIndex::PipeAConf) | 0x80000000);
dbgln_if(INTEL_GRAPHICS_DEBUG, "enabling Pipe A");
// FIXME: Seems like my video card is buggy and doesn't set the enabled bit (bit 30)!!
wait_for_enabled_pipe_a(100);
dbgln_if(INTEL_GRAPHICS_DEBUG, "enabling Pipe A - done.");
}
void IntelNativeGraphicsAdapter::enable_primary_plane(PhysicalAddress fb_address, size_t width)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
VERIFY(((width * 4) % 64 == 0));
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneAStride, width * 4);
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneALinearOffset, 0);
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneASurface, fb_address.get());
// FIXME: Serenity uses BGR 32 bit pixel format, but maybe we should try to determine it somehow!
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneAControl, (read_from_register(IntelGraphics::RegisterIndex::DisplayPlaneAControl) & (~(0b1111 << 26))) | (0b0110 << 26) | (1 << 31));
}
void IntelNativeGraphicsAdapter::set_dpll_registers(PLLSettings const& settings)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::DPLLDivisorA0, (settings.m2 - 2) | ((settings.m1 - 2) << 8) | ((settings.n - 2) << 16));
write_to_register(IntelGraphics::RegisterIndex::DPLLDivisorA1, (settings.m2 - 2) | ((settings.m1 - 2) << 8) | ((settings.n - 2) << 16));
write_to_register(IntelGraphics::RegisterIndex::DPLLControlA, read_from_register(IntelGraphics::RegisterIndex::DPLLControlA) & ~0x80000000);
}
void IntelNativeGraphicsAdapter::enable_dpll_without_vga(PLLSettings const& settings, size_t dac_multiplier)
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
set_dpll_registers(settings);
IO::delay(200);
write_to_register(IntelGraphics::RegisterIndex::DPLLControlA, (6 << 9) | (settings.p1) << 16 | (1 << 26) | (1 << 28) | (1 << 31));
write_to_register(IntelGraphics::RegisterIndex::DPLLMultiplierA, (dac_multiplier - 1) | ((dac_multiplier - 1) << 8));
// The specification says we should wait (at least) about 150 microseconds
// after enabling the DPLL to allow the clock to stabilize
IO::delay(200);
VERIFY(read_from_register(IntelGraphics::RegisterIndex::DPLLControlA) & (1 << 31));
}
void IntelNativeGraphicsAdapter::set_gmbus_pin_pair(GMBusPinPair pin_pair)
{
// FIXME: Verify GMBUS is idle
VERIFY(m_control_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::GMBusClock, (read_from_register(IntelGraphics::RegisterIndex::GMBusClock) & (~0b111)) | (pin_pair & 0b111));
}
void IntelNativeGraphicsAdapter::disable_dac_output()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::AnalogDisplayPort, 0b11 << 10);
}
void IntelNativeGraphicsAdapter::enable_dac_output()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::AnalogDisplayPort, (read_from_register(IntelGraphics::RegisterIndex::AnalogDisplayPort) & (~(0b11 << 10))) | 0x80000000);
}
void IntelNativeGraphicsAdapter::disable_vga_emulation()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::VGADisplayPlaneControl, (read_from_register(IntelGraphics::RegisterIndex::VGADisplayPlaneControl) & (~(1 << 30))) | 0x80000000);
}
void IntelNativeGraphicsAdapter::disable_all_planes()
{
VERIFY(m_control_lock.is_locked());
VERIFY(m_modeset_lock.is_locked());
write_to_register(IntelGraphics::RegisterIndex::DisplayPlaneAControl, read_from_register(IntelGraphics::RegisterIndex::DisplayPlaneAControl) & ~(1 << 31));
}
void IntelNativeGraphicsAdapter::initialize_framebuffer_devices()
{
auto address = PhysicalAddress(PCI::get_BAR2(pci_address()) & 0xfffffff0);
VERIFY(!address.is_null());
VERIFY(m_framebuffer_pitch != 0);
VERIFY(m_framebuffer_height != 0);
VERIFY(m_framebuffer_width != 0);
m_framebuffer_device = FramebufferDevice::create(*this, address, m_framebuffer_width, m_framebuffer_height, m_framebuffer_pitch);
// FIXME: Would be nice to be able to return a ErrorOr<void> here.
auto framebuffer_result = m_framebuffer_device->try_to_initialize();
VERIFY(!framebuffer_result.is_error());
}
ErrorOr<ByteBuffer> IntelNativeGraphicsAdapter::get_edid(size_t output_port_index) const
{
if (output_port_index != 0) {
dbgln("IntelNativeGraphicsAdapter: get_edid: Only one output supported");
return Error::from_errno(ENODEV);
}
if (m_crt_edid.has_value())
return ByteBuffer::copy(m_crt_edid_bytes, sizeof(m_crt_edid_bytes));
return ByteBuffer {};
}
}

View file

@ -9,166 +9,39 @@
#include <AK/Types.h>
#include <Kernel/Bus/PCI/Device.h>
#include <Kernel/Graphics/Definitions.h>
#include <Kernel/Graphics/FramebufferDevice.h>
#include <Kernel/Graphics/VGA/PCIAdapter.h>
#include <Kernel/Graphics/Intel/NativeDisplayConnector.h>
#include <Kernel/PhysicalAddress.h>
#include <LibEDID/EDID.h>
namespace Kernel {
namespace IntelGraphics {
enum RegisterIndex {
PipeAConf = 0x70008,
PipeBConf = 0x71008,
GMBusData = 0x510C,
GMBusStatus = 0x5108,
GMBusCommand = 0x5104,
GMBusClock = 0x5100,
DisplayPlaneAControl = 0x70180,
DisplayPlaneALinearOffset = 0x70184,
DisplayPlaneAStride = 0x70188,
DisplayPlaneASurface = 0x7019C,
DPLLDivisorA0 = 0x6040,
DPLLDivisorA1 = 0x6044,
DPLLControlA = 0x6014,
DPLLControlB = 0x6018,
DPLLMultiplierA = 0x601C,
HTotalA = 0x60000,
HBlankA = 0x60004,
HSyncA = 0x60008,
VTotalA = 0x6000C,
VBlankA = 0x60010,
VSyncA = 0x60014,
PipeASource = 0x6001C,
AnalogDisplayPort = 0x61100,
VGADisplayPlaneControl = 0x71400,
};
}
class IntelNativeGraphicsAdapter final
: public PCIVGACompatibleAdapter {
public:
struct PLLSettings {
bool is_valid() const { return (n != 0 && m1 != 0 && m2 != 0 && p1 != 0 && p2 != 0); }
u64 compute_dot_clock(u64 refclock) const
{
return (refclock * (5 * (m1) + (m2)) / (n)) / (p1 * p2);
}
u64 compute_vco(u64 refclock) const
{
return refclock * (5 * (m1) + (m2)) / n;
}
u64 compute_m() const
{
return 5 * (m1) + (m2);
}
u64 compute_p() const
{
return p1 * p2;
}
u64 n { 0 };
u64 m1 { 0 };
u64 m2 { 0 };
u64 p1 { 0 };
u64 p2 { 0 };
};
struct PLLParameterLimit {
size_t min, max;
};
struct PLLMaxSettings {
PLLParameterLimit dot_clock, vco, n, m, m1, m2, p, p1, p2;
};
private:
enum GMBusPinPair : u8 {
None = 0,
DedicatedControl = 1,
DedicatedAnalog = 0b10,
IntegratedDigital = 0b11,
sDVO = 0b101,
Dconnector = 0b111,
};
enum class GMBusStatus {
TransactionCompletion,
HardwareReady
};
enum GMBusCycle {
Wait = 1,
Stop = 4,
};
: public GenericGraphicsAdapter
, public PCI::Device {
public:
static RefPtr<IntelNativeGraphicsAdapter> initialize(PCI::DeviceIdentifier const&);
virtual ~IntelNativeGraphicsAdapter() = default;
private:
ErrorOr<void> initialize_adapter();
explicit IntelNativeGraphicsAdapter(PCI::Address);
void write_to_register(IntelGraphics::RegisterIndex, u32 value) const;
u32 read_from_register(IntelGraphics::RegisterIndex) const;
// ^GenericGraphicsAdapter
virtual void initialize_framebuffer_devices() override;
virtual ErrorOr<ByteBuffer> get_edid(size_t output_port_index) const override;
// FIXME: Remove all of these methods when we get rid of the FramebufferDevice class.
virtual bool framebuffer_devices_initialized() const override { return false; }
virtual bool modesetting_capable() const override { return true; }
virtual bool vga_compatible() const override { return true; }
virtual bool double_framebuffering_capable() const override { return true; }
virtual bool try_to_set_resolution(size_t, size_t, size_t) override { VERIFY_NOT_REACHED(); }
virtual bool set_y_offset(size_t, size_t) override { VERIFY_NOT_REACHED(); }
virtual void initialize_framebuffer_devices() override { }
virtual void enable_consoles() override { }
virtual void disable_consoles() override { }
virtual ErrorOr<ByteBuffer> get_edid(size_t) const override { VERIFY_NOT_REACHED(); }
bool pipe_a_enabled() const;
bool pipe_b_enabled() const;
bool is_resolution_valid(size_t width, size_t height);
bool set_crt_resolution(size_t width, size_t height);
void disable_output();
void enable_output(PhysicalAddress fb_address, size_t width);
void disable_vga_emulation();
void enable_vga_plane();
void disable_dac_output();
void enable_dac_output();
void disable_all_planes();
void disable_pipe_a();
void disable_pipe_b();
void disable_dpll();
void set_dpll_registers(PLLSettings const&);
void enable_dpll_without_vga(PLLSettings const&, size_t dac_multiplier);
void set_display_timings(Graphics::Modesetting const&);
void enable_pipe_a();
void set_framebuffer_parameters(size_t, size_t);
void enable_primary_plane(PhysicalAddress fb_address, size_t stride);
bool wait_for_enabled_pipe_a(size_t milliseconds_timeout) const;
bool wait_for_disabled_pipe_a(size_t milliseconds_timeout) const;
bool wait_for_disabled_pipe_b(size_t milliseconds_timeout) const;
void set_gmbus_default_rate();
void set_gmbus_pin_pair(GMBusPinPair pin_pair);
// FIXME: It would be better if we generalize the I2C access later on
void gmbus_read_edid();
void gmbus_write(unsigned address, u32 byte);
void gmbus_read(unsigned address, u8* buf, size_t length);
bool gmbus_wait_for(GMBusStatus desired_status, Optional<size_t> milliseconds_timeout);
Optional<PLLSettings> create_pll_settings(u64 target_frequency, u64 reference_clock, PLLMaxSettings const&);
Spinlock m_control_lock;
Spinlock m_modeset_lock;
mutable Spinlock m_registers_lock;
EDID::Parser::RawBytes m_crt_edid_bytes {};
Optional<EDID::Parser> m_crt_edid;
const PhysicalAddress m_registers;
const PhysicalAddress m_framebuffer_addr;
OwnPtr<Memory::Region> m_registers_region;
RefPtr<IntelNativeDisplayConnector> m_display_connector;
};
}