|
@@ -1,635 +0,0 @@
|
|
|
-/*
|
|
|
- * Copyright (c) 2023, Michiel Visser <opensource@webmichiel.nl>
|
|
|
- *
|
|
|
- * SPDX-License-Identifier: BSD-2-Clause
|
|
|
- */
|
|
|
-
|
|
|
-#include <AK/ByteReader.h>
|
|
|
-#include <AK/Endian.h>
|
|
|
-#include <AK/Random.h>
|
|
|
-#include <AK/StringBuilder.h>
|
|
|
-#include <AK/UFixedBigInt.h>
|
|
|
-#include <AK/UFixedBigIntDivision.h>
|
|
|
-#include <LibCrypto/ASN1/DER.h>
|
|
|
-#include <LibCrypto/Curves/SECP384r1.h>
|
|
|
-
|
|
|
-namespace Crypto::Curves {
|
|
|
-
|
|
|
-struct JacobianPoint {
|
|
|
- u384 x { 0u };
|
|
|
- u384 y { 0u };
|
|
|
- u384 z { 0u };
|
|
|
-};
|
|
|
-
|
|
|
-static constexpr u384 calculate_modular_inverse_mod_r(u384 value)
|
|
|
-{
|
|
|
- // Calculate the modular multiplicative inverse of value mod 2^384 using the extended euclidean algorithm
|
|
|
- u768 old_r = value;
|
|
|
- u768 r = static_cast<u768>(1u) << 384u;
|
|
|
- u768 old_s = 1u;
|
|
|
- u768 s = 0u;
|
|
|
-
|
|
|
- while (!r.is_zero_constant_time()) {
|
|
|
- u768 quotient = old_r / r;
|
|
|
- u768 temp = r;
|
|
|
- r = old_r - quotient * r;
|
|
|
- old_r = temp;
|
|
|
-
|
|
|
- temp = s;
|
|
|
- s = old_s - quotient * s;
|
|
|
- old_s = temp;
|
|
|
- }
|
|
|
-
|
|
|
- return old_s.low();
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 calculate_r2_mod(u384 modulus)
|
|
|
-{
|
|
|
- // Calculate the value of R^2 mod modulus, where R = 2^384
|
|
|
- u1536 r = static_cast<u1536>(1u) << 384u;
|
|
|
- u1536 r2 = r * r;
|
|
|
- u1536 result = r2 % static_cast<u1536>(modulus);
|
|
|
- return result.low().low();
|
|
|
-}
|
|
|
-
|
|
|
-// SECP384r1 curve parameters
|
|
|
-static constexpr u384 PRIME { { 0x00000000ffffffffull, 0xffffffff00000000ull, 0xfffffffffffffffeull, 0xffffffffffffffffull, 0xffffffffffffffffull, 0xffffffffffffffffull } };
|
|
|
-static constexpr u384 A { { 0x00000000fffffffcull, 0xffffffff00000000ull, 0xfffffffffffffffeull, 0xffffffffffffffffull, 0xffffffffffffffffull, 0xffffffffffffffffull } };
|
|
|
-static constexpr u384 B { { 0x2a85c8edd3ec2aefull, 0xc656398d8a2ed19dull, 0x0314088f5013875aull, 0x181d9c6efe814112ull, 0x988e056be3f82d19ull, 0xb3312fa7e23ee7e4ull } };
|
|
|
-static constexpr u384 ORDER { { 0xecec196accc52973ull, 0x581a0db248b0a77aull, 0xc7634d81f4372ddfull, 0xffffffffffffffffull, 0xffffffffffffffffull, 0xffffffffffffffffull } };
|
|
|
-
|
|
|
-// Verify that A = -3 mod p, which is required for some optimizations
|
|
|
-static_assert(A == PRIME - 3);
|
|
|
-
|
|
|
-// Precomputed helper values for reduction and Montgomery multiplication
|
|
|
-static constexpr u384 REDUCE_PRIME = u384 { 0 } - PRIME;
|
|
|
-static constexpr u384 REDUCE_ORDER = u384 { 0 } - ORDER;
|
|
|
-static constexpr u384 PRIME_INVERSE_MOD_R = u384 { 0 } - calculate_modular_inverse_mod_r(PRIME);
|
|
|
-static constexpr u384 ORDER_INVERSE_MOD_R = u384 { 0 } - calculate_modular_inverse_mod_r(ORDER);
|
|
|
-static constexpr u384 R2_MOD_PRIME = calculate_r2_mod(PRIME);
|
|
|
-static constexpr u384 R2_MOD_ORDER = calculate_r2_mod(ORDER);
|
|
|
-
|
|
|
-static u384 import_big_endian(ReadonlyBytes data)
|
|
|
-{
|
|
|
- VERIFY(data.size() == 48);
|
|
|
-
|
|
|
- u64 f = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(0 * sizeof(u64))));
|
|
|
- u64 e = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(1 * sizeof(u64))));
|
|
|
- u64 d = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(2 * sizeof(u64))));
|
|
|
- u64 c = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(3 * sizeof(u64))));
|
|
|
- u64 b = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(4 * sizeof(u64))));
|
|
|
- u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(5 * sizeof(u64))));
|
|
|
-
|
|
|
- return u384 { { a, b, c, d, e, f } };
|
|
|
-}
|
|
|
-
|
|
|
-static void export_big_endian(u384 const& value, Bytes data)
|
|
|
-{
|
|
|
- auto span = value.span();
|
|
|
-
|
|
|
- u64 a = AK::convert_between_host_and_big_endian(span[0]);
|
|
|
- u64 b = AK::convert_between_host_and_big_endian(span[1]);
|
|
|
- u64 c = AK::convert_between_host_and_big_endian(span[2]);
|
|
|
- u64 d = AK::convert_between_host_and_big_endian(span[3]);
|
|
|
- u64 e = AK::convert_between_host_and_big_endian(span[4]);
|
|
|
- u64 f = AK::convert_between_host_and_big_endian(span[5]);
|
|
|
-
|
|
|
- ByteReader::store(data.offset_pointer(5 * sizeof(u64)), a);
|
|
|
- ByteReader::store(data.offset_pointer(4 * sizeof(u64)), b);
|
|
|
- ByteReader::store(data.offset_pointer(3 * sizeof(u64)), c);
|
|
|
- ByteReader::store(data.offset_pointer(2 * sizeof(u64)), d);
|
|
|
- ByteReader::store(data.offset_pointer(1 * sizeof(u64)), e);
|
|
|
- ByteReader::store(data.offset_pointer(0 * sizeof(u64)), f);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 select(u384 const& left, u384 const& right, bool condition)
|
|
|
-{
|
|
|
- // If condition = 0 return left else right
|
|
|
- u384 mask = (u384)condition - 1;
|
|
|
-
|
|
|
- return (left & mask) | (right & ~mask);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u768 multiply(u384 const& left, u384 const& right)
|
|
|
-{
|
|
|
- return left.wide_multiply(right);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_reduce(u384 const& value)
|
|
|
-{
|
|
|
- // Add -prime % 2^384
|
|
|
- bool carry = false;
|
|
|
- u384 other = value.addc(REDUCE_PRIME, carry);
|
|
|
-
|
|
|
- // Check for overflow
|
|
|
- return select(value, other, carry);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_reduce_order(u384 const& value)
|
|
|
-{
|
|
|
- // Add -order % 2^384
|
|
|
- bool carry = false;
|
|
|
- u384 other = value.addc(REDUCE_ORDER, carry);
|
|
|
-
|
|
|
- // Check for overflow
|
|
|
- return select(value, other, carry);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_add(u384 const& left, u384 const& right, bool carry_in = false)
|
|
|
-{
|
|
|
- bool carry = carry_in;
|
|
|
- u384 output = left.addc(right, carry);
|
|
|
-
|
|
|
- // If there is a carry, subtract p by adding 2^384 - p
|
|
|
- u384 addend = select(0u, REDUCE_PRIME, carry);
|
|
|
- carry = false;
|
|
|
- output = output.addc(addend, carry);
|
|
|
-
|
|
|
- // If there is still a carry, subtract p by adding 2^384 - p
|
|
|
- addend = select(0u, REDUCE_PRIME, carry);
|
|
|
- return output + addend;
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_sub(u384 const& left, u384 const& right)
|
|
|
-{
|
|
|
- bool borrow = false;
|
|
|
- u384 output = left.subc(right, borrow);
|
|
|
-
|
|
|
- // If there is a borrow, add p by subtracting 2^384 - p
|
|
|
- u384 sub = select(0u, REDUCE_PRIME, borrow);
|
|
|
- borrow = false;
|
|
|
- output = output.subc(sub, borrow);
|
|
|
-
|
|
|
- // If there is still a borrow, add p by subtracting 2^384 - p
|
|
|
- sub = select(0u, REDUCE_PRIME, borrow);
|
|
|
- return output - sub;
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_multiply(u384 const& left, u384 const& right)
|
|
|
-{
|
|
|
- // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
|
|
|
- // This requires that the inputs to this function are in Montgomery form.
|
|
|
-
|
|
|
- // T = left * right
|
|
|
- u768 mult = multiply(left, right);
|
|
|
-
|
|
|
- // m = ((T mod R) * curve_p')
|
|
|
- u768 m = multiply(mult.low(), PRIME_INVERSE_MOD_R);
|
|
|
-
|
|
|
- // mp = (m mod R) * curve_p
|
|
|
- u768 mp = multiply(m.low(), PRIME);
|
|
|
-
|
|
|
- // t = (T + mp)
|
|
|
- bool carry = false;
|
|
|
- mult.low().addc(mp.low(), carry);
|
|
|
-
|
|
|
- // output = t / R
|
|
|
- return modular_add(mult.high(), mp.high(), carry);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_square(u384 const& value)
|
|
|
-{
|
|
|
- return modular_multiply(value, value);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 to_montgomery(u384 const& value)
|
|
|
-{
|
|
|
- return modular_multiply(value, R2_MOD_PRIME);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 from_montgomery(u384 const& value)
|
|
|
-{
|
|
|
- return modular_multiply(value, 1u);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_inverse(u384 const& value)
|
|
|
-{
|
|
|
- // Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
|
|
|
- // Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
|
|
|
- u384 base = value;
|
|
|
- u384 result = to_montgomery(1u);
|
|
|
- u384 prime_minus_2 = PRIME - 2u;
|
|
|
-
|
|
|
- for (size_t i = 0; i < 384; i++) {
|
|
|
- if ((prime_minus_2 & 1u) == 1u) {
|
|
|
- result = modular_multiply(result, base);
|
|
|
- }
|
|
|
- base = modular_square(base);
|
|
|
- prime_minus_2 >>= 1u;
|
|
|
- }
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_add_order(u384 const& left, u384 const& right, bool carry_in = false)
|
|
|
-{
|
|
|
- bool carry = carry_in;
|
|
|
- u384 output = left.addc(right, carry);
|
|
|
-
|
|
|
- // If there is a carry, subtract n by adding 2^384 - n
|
|
|
- u384 addend = select(0u, REDUCE_ORDER, carry);
|
|
|
- carry = false;
|
|
|
- output = output.addc(addend, carry);
|
|
|
-
|
|
|
- // If there is still a carry, subtract n by adding 2^384 - n
|
|
|
- addend = select(0u, REDUCE_ORDER, carry);
|
|
|
- return output + addend;
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_multiply_order(u384 const& left, u384 const& right)
|
|
|
-{
|
|
|
- // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
|
|
|
- // This requires that the inputs to this function are in Montgomery form.
|
|
|
-
|
|
|
- // T = left * right
|
|
|
- u768 mult = multiply(left, right);
|
|
|
-
|
|
|
- // m = ((T mod R) * curve_n')
|
|
|
- u768 m = multiply(mult.low(), ORDER_INVERSE_MOD_R);
|
|
|
-
|
|
|
- // mp = (m mod R) * curve_n
|
|
|
- u768 mp = multiply(m.low(), ORDER);
|
|
|
-
|
|
|
- // t = (T + mp)
|
|
|
- bool carry = false;
|
|
|
- mult.low().addc(mp.low(), carry);
|
|
|
-
|
|
|
- // output = t / R
|
|
|
- return modular_add_order(mult.high(), mp.high(), carry);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_square_order(u384 const& value)
|
|
|
-{
|
|
|
- return modular_multiply_order(value, value);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 to_montgomery_order(u384 const& value)
|
|
|
-{
|
|
|
- return modular_multiply_order(value, R2_MOD_ORDER);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 from_montgomery_order(u384 const& value)
|
|
|
-{
|
|
|
- return modular_multiply_order(value, 1u);
|
|
|
-}
|
|
|
-
|
|
|
-static constexpr u384 modular_inverse_order(u384 const& value)
|
|
|
-{
|
|
|
- // Modular inverse modulo the curve order can be computed using Fermat's little theorem: a^(n-2) mod n = a^-1 mod n.
|
|
|
- // Calculating a^(n-2) mod n can be done using the square-and-multiply exponentiation method, as n-2 is constant.
|
|
|
- u384 base = value;
|
|
|
- u384 result = to_montgomery_order(1u);
|
|
|
- u384 order_minus_2 = ORDER - 2u;
|
|
|
-
|
|
|
- for (size_t i = 0; i < 384; i++) {
|
|
|
- if ((order_minus_2 & 1u) == 1u) {
|
|
|
- result = modular_multiply_order(result, base);
|
|
|
- }
|
|
|
- base = modular_square_order(base);
|
|
|
- order_minus_2 >>= 1u;
|
|
|
- }
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-static void point_double(JacobianPoint& output_point, JacobianPoint const& point)
|
|
|
-{
|
|
|
- // Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
|
|
|
-
|
|
|
- // if (Y == 0)
|
|
|
- // return POINT_AT_INFINITY
|
|
|
- if (point.y.is_zero_constant_time()) {
|
|
|
- VERIFY_NOT_REACHED();
|
|
|
- }
|
|
|
-
|
|
|
- u384 temp;
|
|
|
-
|
|
|
- // Y2 = Y^2
|
|
|
- u384 y2 = modular_square(point.y);
|
|
|
-
|
|
|
- // S = 4*X*Y2
|
|
|
- u384 s = modular_multiply(point.x, y2);
|
|
|
- s = modular_add(s, s);
|
|
|
- s = modular_add(s, s);
|
|
|
-
|
|
|
- // M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
|
|
|
- // This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
|
|
|
- // This simplification only works because a = -3 mod p
|
|
|
- temp = modular_square(point.z);
|
|
|
- u384 m = modular_add(point.x, temp);
|
|
|
- temp = modular_sub(point.x, temp);
|
|
|
- m = modular_multiply(m, temp);
|
|
|
- temp = modular_add(m, m);
|
|
|
- m = modular_add(m, temp);
|
|
|
-
|
|
|
- // X' = M^2 - 2*S
|
|
|
- u384 xp = modular_square(m);
|
|
|
- xp = modular_sub(xp, s);
|
|
|
- xp = modular_sub(xp, s);
|
|
|
-
|
|
|
- // Y' = M*(S - X') - 8*Y2^2
|
|
|
- u384 yp = modular_sub(s, xp);
|
|
|
- yp = modular_multiply(yp, m);
|
|
|
- temp = modular_square(y2);
|
|
|
- temp = modular_add(temp, temp);
|
|
|
- temp = modular_add(temp, temp);
|
|
|
- temp = modular_add(temp, temp);
|
|
|
- yp = modular_sub(yp, temp);
|
|
|
-
|
|
|
- // Z' = 2*Y*Z
|
|
|
- u384 zp = modular_multiply(point.y, point.z);
|
|
|
- zp = modular_add(zp, zp);
|
|
|
-
|
|
|
- // return (X', Y', Z')
|
|
|
- output_point.x = xp;
|
|
|
- output_point.y = yp;
|
|
|
- output_point.z = zp;
|
|
|
-}
|
|
|
-
|
|
|
-static void point_add(JacobianPoint& output_point, JacobianPoint const& point_a, JacobianPoint const& point_b)
|
|
|
-{
|
|
|
- // Based on "Point Addition" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
|
|
|
- if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
|
|
|
- output_point.x = point_b.x;
|
|
|
- output_point.y = point_b.y;
|
|
|
- output_point.z = point_b.z;
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- u384 temp;
|
|
|
-
|
|
|
- temp = modular_square(point_b.z);
|
|
|
- // U1 = X1*Z2^2
|
|
|
- u384 u1 = modular_multiply(point_a.x, temp);
|
|
|
- // S1 = Y1*Z2^3
|
|
|
- u384 s1 = modular_multiply(point_a.y, temp);
|
|
|
- s1 = modular_multiply(s1, point_b.z);
|
|
|
-
|
|
|
- temp = modular_square(point_a.z);
|
|
|
- // U2 = X2*Z1^2
|
|
|
- u384 u2 = modular_multiply(point_b.x, temp);
|
|
|
- // S2 = Y2*Z1^3
|
|
|
- u384 s2 = modular_multiply(point_b.y, temp);
|
|
|
- s2 = modular_multiply(s2, point_a.z);
|
|
|
-
|
|
|
- // if (U1 == U2)
|
|
|
- // if (S1 != S2)
|
|
|
- // return POINT_AT_INFINITY
|
|
|
- // else
|
|
|
- // return POINT_DOUBLE(X1, Y1, Z1)
|
|
|
- if (u1.is_equal_to_constant_time(u2)) {
|
|
|
- if (s1.is_equal_to_constant_time(s2)) {
|
|
|
- point_double(output_point, point_a);
|
|
|
- return;
|
|
|
- } else {
|
|
|
- VERIFY_NOT_REACHED();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // H = U2 - U1
|
|
|
- u384 h = modular_sub(u2, u1);
|
|
|
- u384 h2 = modular_square(h);
|
|
|
- u384 h3 = modular_multiply(h2, h);
|
|
|
- // R = S2 - S1
|
|
|
- u384 r = modular_sub(s2, s1);
|
|
|
- // X3 = R^2 - H^3 - 2*U1*H^2
|
|
|
- u384 x3 = modular_square(r);
|
|
|
- x3 = modular_sub(x3, h3);
|
|
|
- temp = modular_multiply(u1, h2);
|
|
|
- temp = modular_add(temp, temp);
|
|
|
- x3 = modular_sub(x3, temp);
|
|
|
- // Y3 = R*(U1*H^2 - X3) - S1*H^3
|
|
|
- u384 y3 = modular_multiply(u1, h2);
|
|
|
- y3 = modular_sub(y3, x3);
|
|
|
- y3 = modular_multiply(y3, r);
|
|
|
- temp = modular_multiply(s1, h3);
|
|
|
- y3 = modular_sub(y3, temp);
|
|
|
- // Z3 = H*Z1*Z2
|
|
|
- u384 z3 = modular_multiply(h, point_a.z);
|
|
|
- z3 = modular_multiply(z3, point_b.z);
|
|
|
- // return (X3, Y3, Z3)
|
|
|
- output_point.x = x3;
|
|
|
- output_point.y = y3;
|
|
|
- output_point.z = z3;
|
|
|
-}
|
|
|
-
|
|
|
-static void convert_jacobian_to_affine(JacobianPoint& point)
|
|
|
-{
|
|
|
- u384 temp;
|
|
|
- // X' = X/Z^2
|
|
|
- temp = modular_square(point.z);
|
|
|
- temp = modular_inverse(temp);
|
|
|
- point.x = modular_multiply(point.x, temp);
|
|
|
- // Y' = Y/Z^3
|
|
|
- temp = modular_square(point.z);
|
|
|
- temp = modular_multiply(temp, point.z);
|
|
|
- temp = modular_inverse(temp);
|
|
|
- point.y = modular_multiply(point.y, temp);
|
|
|
- // Z' = 1
|
|
|
- point.z = to_montgomery(1u);
|
|
|
-}
|
|
|
-
|
|
|
-static bool is_point_on_curve(JacobianPoint const& point)
|
|
|
-{
|
|
|
- // This check requires the point to be in Montgomery form, with Z=1
|
|
|
- u384 temp, temp2;
|
|
|
-
|
|
|
- // Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
|
|
|
- temp = modular_square(point.y);
|
|
|
- temp2 = modular_square(point.x);
|
|
|
- temp2 = modular_multiply(temp2, point.x);
|
|
|
- temp = modular_sub(temp, temp2);
|
|
|
- temp = modular_add(temp, point.x);
|
|
|
- temp = modular_add(temp, point.x);
|
|
|
- temp = modular_add(temp, point.x);
|
|
|
- temp = modular_sub(temp, to_montgomery(B));
|
|
|
- temp = modular_reduce(temp);
|
|
|
-
|
|
|
- return temp.is_zero_constant_time() && point.z.is_equal_to_constant_time(to_montgomery(1u));
|
|
|
-}
|
|
|
-
|
|
|
-ErrorOr<ByteBuffer> SECP384r1::generate_private_key()
|
|
|
-{
|
|
|
- auto buffer = TRY(ByteBuffer::create_uninitialized(48));
|
|
|
- fill_with_random(buffer);
|
|
|
- return buffer;
|
|
|
-}
|
|
|
-
|
|
|
-ErrorOr<ByteBuffer> SECP384r1::generate_public_key(ReadonlyBytes a)
|
|
|
-{
|
|
|
- // clang-format off
|
|
|
- u8 generator_bytes[97] {
|
|
|
- 0x04,
|
|
|
- 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, 0xF3, 0x20, 0xAD, 0x74,
|
|
|
- 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98, 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38,
|
|
|
- 0x55, 0x02, 0xF2, 0x5D, 0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7,
|
|
|
- 0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, 0x92, 0x92, 0xDC, 0x29,
|
|
|
- 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C, 0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0,
|
|
|
- 0x0A, 0x60, 0xB1, 0xCE, 0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F,
|
|
|
- };
|
|
|
- // clang-format on
|
|
|
- return compute_coordinate(a, { generator_bytes, 97 });
|
|
|
-}
|
|
|
-
|
|
|
-ErrorOr<ByteBuffer> SECP384r1::compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes)
|
|
|
-{
|
|
|
- VERIFY(scalar_bytes.size() == 48);
|
|
|
-
|
|
|
- u384 scalar = import_big_endian(scalar_bytes);
|
|
|
- // FIXME: This will slightly bias the distribution of client secrets
|
|
|
- scalar = modular_reduce_order(scalar);
|
|
|
- if (scalar.is_zero_constant_time())
|
|
|
- return Error::from_string_literal("SECP384r1: scalar is zero");
|
|
|
-
|
|
|
- // Make sure the point is uncompressed
|
|
|
- if (point_bytes.size() != 97 || point_bytes[0] != 0x04)
|
|
|
- return Error::from_string_literal("SECP384r1: point is not uncompressed format");
|
|
|
-
|
|
|
- JacobianPoint point {
|
|
|
- import_big_endian(point_bytes.slice(1, 48)),
|
|
|
- import_big_endian(point_bytes.slice(49, 48)),
|
|
|
- 1u,
|
|
|
- };
|
|
|
-
|
|
|
- // Convert the input point into Montgomery form
|
|
|
- point.x = to_montgomery(point.x);
|
|
|
- point.y = to_montgomery(point.y);
|
|
|
- point.z = to_montgomery(point.z);
|
|
|
-
|
|
|
- // Check that the point is on the curve
|
|
|
- if (!is_point_on_curve(point))
|
|
|
- return Error::from_string_literal("SECP384r1: point is not on the curve");
|
|
|
-
|
|
|
- JacobianPoint result;
|
|
|
- JacobianPoint temp_result;
|
|
|
-
|
|
|
- // Calculate the scalar times point multiplication in constant time
|
|
|
- for (auto i = 0; i < 384; i++) {
|
|
|
- point_add(temp_result, result, point);
|
|
|
-
|
|
|
- auto condition = (scalar & 1u) == 1u;
|
|
|
- result.x = select(result.x, temp_result.x, condition);
|
|
|
- result.y = select(result.y, temp_result.y, condition);
|
|
|
- result.z = select(result.z, temp_result.z, condition);
|
|
|
-
|
|
|
- point_double(point, point);
|
|
|
- scalar >>= 1u;
|
|
|
- }
|
|
|
-
|
|
|
- // Convert from Jacobian coordinates back to Affine coordinates
|
|
|
- convert_jacobian_to_affine(result);
|
|
|
-
|
|
|
- // Make sure the resulting point is on the curve
|
|
|
- VERIFY(is_point_on_curve(result));
|
|
|
-
|
|
|
- // Convert the result back from Montgomery form
|
|
|
- result.x = from_montgomery(result.x);
|
|
|
- result.y = from_montgomery(result.y);
|
|
|
- // Final modular reduction on the coordinates
|
|
|
- result.x = modular_reduce(result.x);
|
|
|
- result.y = modular_reduce(result.y);
|
|
|
-
|
|
|
- // Export the values into an output buffer
|
|
|
- auto buf = TRY(ByteBuffer::create_uninitialized(97));
|
|
|
- buf[0] = 0x04;
|
|
|
- export_big_endian(result.x, buf.bytes().slice(1, 48));
|
|
|
- export_big_endian(result.y, buf.bytes().slice(49, 48));
|
|
|
- return buf;
|
|
|
-}
|
|
|
-
|
|
|
-ErrorOr<ByteBuffer> SECP384r1::derive_premaster_key(ReadonlyBytes shared_point)
|
|
|
-{
|
|
|
- VERIFY(shared_point.size() == 97);
|
|
|
- VERIFY(shared_point[0] == 0x04);
|
|
|
-
|
|
|
- ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(48));
|
|
|
- premaster_key.overwrite(0, shared_point.data() + 1, 48);
|
|
|
- return premaster_key;
|
|
|
-}
|
|
|
-
|
|
|
-ErrorOr<bool> SECP384r1::verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature)
|
|
|
-{
|
|
|
- Crypto::ASN1::Decoder asn1_decoder(signature);
|
|
|
- TRY(asn1_decoder.enter());
|
|
|
-
|
|
|
- auto r_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
|
|
|
- auto s_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
|
|
|
-
|
|
|
- u384 r = 0u;
|
|
|
- u384 s = 0u;
|
|
|
- for (size_t i = 0; i < 12; i++) {
|
|
|
- u384 rr = r_bigint.words()[i];
|
|
|
- u384 ss = s_bigint.words()[i];
|
|
|
- r |= (rr << (i * 32));
|
|
|
- s |= (ss << (i * 32));
|
|
|
- }
|
|
|
-
|
|
|
- // z is the hash
|
|
|
- u384 z = import_big_endian(hash.slice(0, 48));
|
|
|
-
|
|
|
- u384 r_mo = to_montgomery_order(r);
|
|
|
- u384 s_mo = to_montgomery_order(s);
|
|
|
- u384 z_mo = to_montgomery_order(z);
|
|
|
-
|
|
|
- u384 s_inv = modular_inverse_order(s_mo);
|
|
|
-
|
|
|
- u384 u1 = modular_multiply_order(z_mo, s_inv);
|
|
|
- u384 u2 = modular_multiply_order(r_mo, s_inv);
|
|
|
-
|
|
|
- u1 = from_montgomery_order(u1);
|
|
|
- u2 = from_montgomery_order(u2);
|
|
|
-
|
|
|
- auto u1_buf = TRY(ByteBuffer::create_uninitialized(48));
|
|
|
- export_big_endian(u1, u1_buf.bytes());
|
|
|
- auto u2_buf = TRY(ByteBuffer::create_uninitialized(48));
|
|
|
- export_big_endian(u2, u2_buf.bytes());
|
|
|
-
|
|
|
- auto p1 = TRY(generate_public_key(u1_buf));
|
|
|
- auto p2 = TRY(compute_coordinate(u2_buf, pubkey));
|
|
|
-
|
|
|
- JacobianPoint point1 {
|
|
|
- import_big_endian(TRY(p1.slice(1, 48))),
|
|
|
- import_big_endian(TRY(p1.slice(49, 48))),
|
|
|
- 1u,
|
|
|
- };
|
|
|
-
|
|
|
- // Convert the input point into Montgomery form
|
|
|
- point1.x = to_montgomery(point1.x);
|
|
|
- point1.y = to_montgomery(point1.y);
|
|
|
- point1.z = to_montgomery(point1.z);
|
|
|
-
|
|
|
- VERIFY(is_point_on_curve(point1));
|
|
|
-
|
|
|
- JacobianPoint point2 {
|
|
|
- import_big_endian(TRY(p2.slice(1, 48))),
|
|
|
- import_big_endian(TRY(p2.slice(49, 48))),
|
|
|
- 1u,
|
|
|
- };
|
|
|
-
|
|
|
- // Convert the input point into Montgomery form
|
|
|
- point2.x = to_montgomery(point2.x);
|
|
|
- point2.y = to_montgomery(point2.y);
|
|
|
- point2.z = to_montgomery(point2.z);
|
|
|
-
|
|
|
- VERIFY(is_point_on_curve(point2));
|
|
|
-
|
|
|
- JacobianPoint result;
|
|
|
- point_add(result, point1, point2);
|
|
|
-
|
|
|
- // Convert from Jacobian coordinates back to Affine coordinates
|
|
|
- convert_jacobian_to_affine(result);
|
|
|
-
|
|
|
- // Make sure the resulting point is on the curve
|
|
|
- VERIFY(is_point_on_curve(result));
|
|
|
-
|
|
|
- // Convert the result back from Montgomery form
|
|
|
- result.x = from_montgomery(result.x);
|
|
|
- result.y = from_montgomery(result.y);
|
|
|
- // Final modular reduction on the coordinates
|
|
|
- result.x = modular_reduce(result.x);
|
|
|
- result.y = modular_reduce(result.y);
|
|
|
-
|
|
|
- return r.is_equal_to_constant_time(result.x);
|
|
|
-}
|
|
|
-
|
|
|
-}
|