فهرست منبع

LibCrypto+LibTLS: Switch to the generic `SECPxxxr1` implementation

Michiel Visser 1 سال پیش
والد
کامیت
bc9cdd4394

+ 1 - 1
Tests/LibCrypto/TestCurves.cpp

@@ -5,7 +5,7 @@
  */
  */
 
 
 #include <AK/ByteBuffer.h>
 #include <AK/ByteBuffer.h>
-#include <LibCrypto/Curves/SECP256r1.h>
+#include <LibCrypto/Curves/SECPxxxr1.h>
 #include <LibCrypto/Curves/X25519.h>
 #include <LibCrypto/Curves/X25519.h>
 #include <LibCrypto/Curves/X448.h>
 #include <LibCrypto/Curves/X448.h>
 #include <LibTest/TestCase.h>
 #include <LibTest/TestCase.h>

+ 0 - 2
Userland/Libraries/LibCrypto/CMakeLists.txt

@@ -23,8 +23,6 @@ set(SOURCES
     Cipher/ChaCha20.cpp
     Cipher/ChaCha20.cpp
     Curves/Curve25519.cpp
     Curves/Curve25519.cpp
     Curves/Ed25519.cpp
     Curves/Ed25519.cpp
-    Curves/SECP256r1.cpp
-    Curves/SECP384r1.cpp
     Curves/X25519.cpp
     Curves/X25519.cpp
     Curves/X448.cpp
     Curves/X448.cpp
     Hash/BLAKE2b.cpp
     Hash/BLAKE2b.cpp

+ 0 - 625
Userland/Libraries/LibCrypto/Curves/SECP256r1.cpp

@@ -1,625 +0,0 @@
-/*
- * Copyright (c) 2022, Michiel Visser <opensource@webmichiel.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
-
-#include <AK/ByteReader.h>
-#include <AK/Endian.h>
-#include <AK/Random.h>
-#include <AK/StringBuilder.h>
-#include <AK/UFixedBigInt.h>
-#include <AK/UFixedBigIntDivision.h>
-#include <LibCrypto/ASN1/DER.h>
-#include <LibCrypto/Curves/SECP256r1.h>
-
-namespace Crypto::Curves {
-
-struct JacobianPoint {
-    u256 x { 0u };
-    u256 y { 0u };
-    u256 z { 0u };
-};
-
-static constexpr u256 calculate_modular_inverse_mod_r(u256 value)
-{
-    // Calculate the modular multiplicative inverse of value mod 2^256 using the extended euclidean algorithm
-    u512 old_r = value;
-    u512 r = static_cast<u512>(1u) << 256u;
-    u512 old_s = 1u;
-    u512 s = 0u;
-
-    while (!r.is_zero_constant_time()) {
-        u512 quotient = old_r / r;
-        u512 temp = r;
-        r = old_r - quotient * r;
-        old_r = temp;
-
-        temp = s;
-        s = old_s - quotient * s;
-        old_s = temp;
-    }
-
-    return old_s.low();
-}
-
-static constexpr u256 calculate_r2_mod(u256 modulus)
-{
-    // Calculate the value of R^2 mod modulus, where R = 2^256
-    u1024 r = static_cast<u1024>(1u) << 256u;
-    u1024 r2 = r * r;
-    u1024 result = r2 % static_cast<u1024>(modulus);
-    return result.low().low();
-}
-
-// SECP256r1 curve parameters
-static constexpr u256 PRIME { { 0xffffffffffffffffull, 0x00000000ffffffffull, 0x0000000000000000ull, 0xffffffff00000001ull } };
-static constexpr u256 A { { 0xfffffffffffffffcull, 0x00000000ffffffffull, 0x0000000000000000ull, 0xffffffff00000001ull } };
-static constexpr u256 B { { 0x3bce3c3e27d2604bull, 0x651d06b0cc53b0f6ull, 0xb3ebbd55769886bcull, 0x5ac635d8aa3a93e7ull } };
-static constexpr u256 ORDER { { 0xf3b9cac2fc632551ull, 0xbce6faada7179e84ull, 0xffffffffffffffffull, 0xffffffff00000000ull } };
-
-// Verify that A = -3 mod p, which is required for some optimizations
-static_assert(A == PRIME - 3);
-
-// Precomputed helper values for reduction and Montgomery multiplication
-static constexpr u256 REDUCE_PRIME = u256 { 0 } - PRIME;
-static constexpr u256 REDUCE_ORDER = u256 { 0 } - ORDER;
-static constexpr u256 PRIME_INVERSE_MOD_R = u256 { 0 } - calculate_modular_inverse_mod_r(PRIME);
-static constexpr u256 ORDER_INVERSE_MOD_R = u256 { 0 } - calculate_modular_inverse_mod_r(ORDER);
-static constexpr u256 R2_MOD_PRIME = calculate_r2_mod(PRIME);
-static constexpr u256 R2_MOD_ORDER = calculate_r2_mod(ORDER);
-
-static u256 import_big_endian(ReadonlyBytes data)
-{
-    VERIFY(data.size() == 32);
-
-    u64 d = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(0 * sizeof(u64))));
-    u64 c = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(1 * sizeof(u64))));
-    u64 b = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(2 * sizeof(u64))));
-    u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(3 * sizeof(u64))));
-
-    return u256 { { a, b, c, d } };
-}
-
-static void export_big_endian(u256 const& value, Bytes data)
-{
-    u64 a = AK::convert_between_host_and_big_endian(value.low().low());
-    u64 b = AK::convert_between_host_and_big_endian(value.low().high());
-    u64 c = AK::convert_between_host_and_big_endian(value.high().low());
-    u64 d = AK::convert_between_host_and_big_endian(value.high().high());
-
-    ByteReader::store(data.offset_pointer(3 * sizeof(u64)), a);
-    ByteReader::store(data.offset_pointer(2 * sizeof(u64)), b);
-    ByteReader::store(data.offset_pointer(1 * sizeof(u64)), c);
-    ByteReader::store(data.offset_pointer(0 * sizeof(u64)), d);
-}
-
-static constexpr u256 select(u256 const& left, u256 const& right, bool condition)
-{
-    // If condition = 0 return left else right
-    u256 mask = (u256)condition - 1;
-
-    return (left & mask) | (right & ~mask);
-}
-
-static constexpr u512 multiply(u256 const& left, u256 const& right)
-{
-    return left.wide_multiply(right);
-}
-
-static constexpr u256 modular_reduce(u256 const& value)
-{
-    // Add -prime % 2^256 = 2^224-2^192-2^96+1
-    bool carry = false;
-    u256 other = value.addc(REDUCE_PRIME, carry);
-
-    // Check for overflow
-    return select(value, other, carry);
-}
-
-static constexpr u256 modular_reduce_order(u256 const& value)
-{
-    // Add -order % 2^256
-    bool carry = false;
-    u256 other = value.addc(REDUCE_ORDER, carry);
-
-    // Check for overflow
-    return select(value, other, carry);
-}
-
-static constexpr u256 modular_add(u256 const& left, u256 const& right, bool carry_in = false)
-{
-    bool carry = carry_in;
-    u256 output = left.addc(right, carry);
-
-    // If there is a carry, subtract p by adding 2^256 - p
-    u256 addend = select(0u, REDUCE_PRIME, carry);
-    carry = false;
-    output = output.addc(addend, carry);
-
-    // If there is still a carry, subtract p by adding 2^256 - p
-    addend = select(0u, REDUCE_PRIME, carry);
-    return output + addend;
-}
-
-static constexpr u256 modular_sub(u256 const& left, u256 const& right)
-{
-    bool borrow = false;
-    u256 output = left.subc(right, borrow);
-
-    // If there is a borrow, add p by subtracting 2^256 - p
-    u256 sub = select(0u, REDUCE_PRIME, borrow);
-    borrow = false;
-    output = output.subc(sub, borrow);
-
-    // If there is still a borrow, add p by subtracting 2^256 - p
-    sub = select(0u, REDUCE_PRIME, borrow);
-    return output - sub;
-}
-
-static constexpr u256 modular_multiply(u256 const& left, u256 const& right)
-{
-    // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
-    // This requires that the inputs to this function are in Montgomery form.
-
-    // T = left * right
-    u512 mult = multiply(left, right);
-
-    // m = ((T mod R) * curve_p')
-    u512 m = multiply(mult.low(), PRIME_INVERSE_MOD_R);
-
-    // mp = (m mod R) * curve_p
-    u512 mp = multiply(m.low(), PRIME);
-
-    // t = (T + mp)
-    bool carry = false;
-    mult.low().addc(mp.low(), carry);
-
-    // output = t / R
-    return modular_add(mult.high(), mp.high(), carry);
-}
-
-static constexpr u256 modular_square(u256 const& value)
-{
-    return modular_multiply(value, value);
-}
-
-static constexpr u256 to_montgomery(u256 const& value)
-{
-    return modular_multiply(value, R2_MOD_PRIME);
-}
-
-static constexpr u256 from_montgomery(u256 const& value)
-{
-    return modular_multiply(value, 1u);
-}
-
-static constexpr u256 modular_inverse(u256 const& value)
-{
-    // Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
-    // Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
-    u256 base = value;
-    u256 result = to_montgomery(1u);
-    u256 prime_minus_2 = PRIME - 2u;
-
-    for (size_t i = 0; i < 256; i++) {
-        if ((prime_minus_2 & 1u) == 1u) {
-            result = modular_multiply(result, base);
-        }
-        base = modular_square(base);
-        prime_minus_2 >>= 1u;
-    }
-
-    return result;
-}
-
-static constexpr u256 modular_add_order(u256 const& left, u256 const& right, bool carry_in = false)
-{
-    bool carry = carry_in;
-    u256 output = left.addc(right, carry);
-
-    // If there is a carry, subtract n by adding 2^256 - n
-    u256 addend = select(0u, REDUCE_ORDER, carry);
-    carry = false;
-    output = output.addc(addend, carry);
-
-    // If there is still a carry, subtract n by adding 2^256 - n
-    addend = select(0u, REDUCE_ORDER, carry);
-    return output + addend;
-}
-
-static constexpr u256 modular_multiply_order(u256 const& left, u256 const& right)
-{
-    // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
-    // This requires that the inputs to this function are in Montgomery form.
-
-    // T = left * right
-    u512 mult = multiply(left, right);
-
-    // m = ((T mod R) * curve_n')
-    u512 m = multiply(mult.low(), ORDER_INVERSE_MOD_R);
-
-    // mp = (m mod R) * curve_n
-    u512 mp = multiply(m.low(), ORDER);
-
-    // t = (T + mp)
-    bool carry = false;
-    mult.low().addc(mp.low(), carry);
-
-    // output = t / R
-    return modular_add_order(mult.high(), mp.high(), carry);
-}
-
-static constexpr u256 modular_square_order(u256 const& value)
-{
-    return modular_multiply_order(value, value);
-}
-
-static constexpr u256 to_montgomery_order(u256 const& value)
-{
-    return modular_multiply_order(value, R2_MOD_ORDER);
-}
-
-static constexpr u256 from_montgomery_order(u256 const& value)
-{
-    return modular_multiply_order(value, 1u);
-}
-
-static constexpr u256 modular_inverse_order(u256 const& value)
-{
-    // Modular inverse modulo the curve order can be computed using Fermat's little theorem: a^(n-2) mod n = a^-1 mod n.
-    // Calculating a^(n-2) mod n can be done using the square-and-multiply exponentiation method, as n-2 is constant.
-    u256 base = value;
-    u256 result = to_montgomery_order(1u);
-    u256 order_minus_2 = ORDER - 2u;
-
-    for (size_t i = 0; i < 256; i++) {
-        if ((order_minus_2 & 1u) == 1u) {
-            result = modular_multiply_order(result, base);
-        }
-        base = modular_square_order(base);
-        order_minus_2 >>= 1u;
-    }
-
-    return result;
-}
-
-static void point_double(JacobianPoint& output_point, JacobianPoint const& point)
-{
-    // Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
-
-    // if (Y == 0)
-    //   return POINT_AT_INFINITY
-    if (point.y.is_zero_constant_time()) {
-        VERIFY_NOT_REACHED();
-    }
-
-    u256 temp;
-
-    // Y2 = Y^2
-    u256 y2 = modular_square(point.y);
-
-    // S = 4*X*Y2
-    u256 s = modular_multiply(point.x, y2);
-    s = modular_add(s, s);
-    s = modular_add(s, s);
-
-    // M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
-    // This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
-    // This simplification only works because a = -3 mod p
-    temp = modular_square(point.z);
-    u256 m = modular_add(point.x, temp);
-    temp = modular_sub(point.x, temp);
-    m = modular_multiply(m, temp);
-    temp = modular_add(m, m);
-    m = modular_add(m, temp);
-
-    // X' = M^2 - 2*S
-    u256 xp = modular_square(m);
-    xp = modular_sub(xp, s);
-    xp = modular_sub(xp, s);
-
-    // Y' = M*(S - X') - 8*Y2^2
-    u256 yp = modular_sub(s, xp);
-    yp = modular_multiply(yp, m);
-    temp = modular_square(y2);
-    temp = modular_add(temp, temp);
-    temp = modular_add(temp, temp);
-    temp = modular_add(temp, temp);
-    yp = modular_sub(yp, temp);
-
-    // Z' = 2*Y*Z
-    u256 zp = modular_multiply(point.y, point.z);
-    zp = modular_add(zp, zp);
-
-    // return (X', Y', Z')
-    output_point.x = xp;
-    output_point.y = yp;
-    output_point.z = zp;
-}
-
-static void point_add(JacobianPoint& output_point, JacobianPoint const& point_a, JacobianPoint const& point_b)
-{
-    // Based on "Point Addition" from  http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
-    if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
-        output_point.x = point_b.x;
-        output_point.y = point_b.y;
-        output_point.z = point_b.z;
-        return;
-    }
-
-    u256 temp;
-
-    temp = modular_square(point_b.z);
-    // U1 = X1*Z2^2
-    u256 u1 = modular_multiply(point_a.x, temp);
-    // S1 = Y1*Z2^3
-    u256 s1 = modular_multiply(point_a.y, temp);
-    s1 = modular_multiply(s1, point_b.z);
-
-    temp = modular_square(point_a.z);
-    // U2 = X2*Z1^2
-    u256 u2 = modular_multiply(point_b.x, temp);
-    // S2 = Y2*Z1^3
-    u256 s2 = modular_multiply(point_b.y, temp);
-    s2 = modular_multiply(s2, point_a.z);
-
-    // if (U1 == U2)
-    //   if (S1 != S2)
-    //     return POINT_AT_INFINITY
-    //   else
-    //     return POINT_DOUBLE(X1, Y1, Z1)
-    if (u1.is_equal_to_constant_time(u2)) {
-        if (s1.is_equal_to_constant_time(s2)) {
-            point_double(output_point, point_a);
-            return;
-        } else {
-            VERIFY_NOT_REACHED();
-        }
-    }
-
-    // H = U2 - U1
-    u256 h = modular_sub(u2, u1);
-    u256 h2 = modular_square(h);
-    u256 h3 = modular_multiply(h2, h);
-    // R = S2 - S1
-    u256 r = modular_sub(s2, s1);
-    // X3 = R^2 - H^3 - 2*U1*H^2
-    u256 x3 = modular_square(r);
-    x3 = modular_sub(x3, h3);
-    temp = modular_multiply(u1, h2);
-    temp = modular_add(temp, temp);
-    x3 = modular_sub(x3, temp);
-    // Y3 = R*(U1*H^2 - X3) - S1*H^3
-    u256 y3 = modular_multiply(u1, h2);
-    y3 = modular_sub(y3, x3);
-    y3 = modular_multiply(y3, r);
-    temp = modular_multiply(s1, h3);
-    y3 = modular_sub(y3, temp);
-    // Z3 = H*Z1*Z2
-    u256 z3 = modular_multiply(h, point_a.z);
-    z3 = modular_multiply(z3, point_b.z);
-    // return (X3, Y3, Z3)
-    output_point.x = x3;
-    output_point.y = y3;
-    output_point.z = z3;
-}
-
-static void convert_jacobian_to_affine(JacobianPoint& point)
-{
-    u256 temp;
-    // X' = X/Z^2
-    temp = modular_square(point.z);
-    temp = modular_inverse(temp);
-    point.x = modular_multiply(point.x, temp);
-    // Y' = Y/Z^3
-    temp = modular_square(point.z);
-    temp = modular_multiply(temp, point.z);
-    temp = modular_inverse(temp);
-    point.y = modular_multiply(point.y, temp);
-    // Z' = 1
-    point.z = to_montgomery(1u);
-}
-
-static bool is_point_on_curve(JacobianPoint const& point)
-{
-    // This check requires the point to be in Montgomery form, with Z=1
-    u256 temp, temp2;
-
-    // Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
-    temp = modular_square(point.y);
-    temp2 = modular_square(point.x);
-    temp2 = modular_multiply(temp2, point.x);
-    temp = modular_sub(temp, temp2);
-    temp = modular_add(temp, point.x);
-    temp = modular_add(temp, point.x);
-    temp = modular_add(temp, point.x);
-    temp = modular_sub(temp, to_montgomery(B));
-    temp = modular_reduce(temp);
-
-    return temp.is_zero_constant_time() && point.z.is_equal_to_constant_time(to_montgomery(1u));
-}
-
-ErrorOr<ByteBuffer> SECP256r1::generate_private_key()
-{
-    auto buffer = TRY(ByteBuffer::create_uninitialized(32));
-    fill_with_random(buffer);
-    return buffer;
-}
-
-ErrorOr<ByteBuffer> SECP256r1::generate_public_key(ReadonlyBytes a)
-{
-    // clang-format off
-    u8 generator_bytes[65] {
-        0x04,
-        0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2,
-        0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96,
-        0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16,
-        0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5,
-    };
-    // clang-format on
-    return compute_coordinate(a, { generator_bytes, 65 });
-}
-
-ErrorOr<ByteBuffer> SECP256r1::compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes)
-{
-    VERIFY(scalar_bytes.size() == 32);
-
-    u256 scalar = import_big_endian(scalar_bytes);
-    // FIXME: This will slightly bias the distribution of client secrets
-    scalar = modular_reduce_order(scalar);
-    if (scalar.is_zero_constant_time())
-        return Error::from_string_literal("SECP256r1: scalar is zero");
-
-    // Make sure the point is uncompressed
-    if (point_bytes.size() != 65 || point_bytes[0] != 0x04)
-        return Error::from_string_literal("SECP256r1: point is not uncompressed format");
-
-    JacobianPoint point {
-        import_big_endian(point_bytes.slice(1, 32)),
-        import_big_endian(point_bytes.slice(33, 32)),
-        1u,
-    };
-
-    // Convert the input point into Montgomery form
-    point.x = to_montgomery(point.x);
-    point.y = to_montgomery(point.y);
-    point.z = to_montgomery(point.z);
-
-    // Check that the point is on the curve
-    if (!is_point_on_curve(point))
-        return Error::from_string_literal("SECP256r1: point is not on the curve");
-
-    JacobianPoint result;
-    JacobianPoint temp_result;
-
-    // Calculate the scalar times point multiplication in constant time
-    for (auto i = 0; i < 256; i++) {
-        point_add(temp_result, result, point);
-
-        auto condition = (scalar & 1u) == 1u;
-        result.x = select(result.x, temp_result.x, condition);
-        result.y = select(result.y, temp_result.y, condition);
-        result.z = select(result.z, temp_result.z, condition);
-
-        point_double(point, point);
-        scalar >>= 1u;
-    }
-
-    // Convert from Jacobian coordinates back to Affine coordinates
-    convert_jacobian_to_affine(result);
-
-    // Make sure the resulting point is on the curve
-    VERIFY(is_point_on_curve(result));
-
-    // Convert the result back from Montgomery form
-    result.x = from_montgomery(result.x);
-    result.y = from_montgomery(result.y);
-    // Final modular reduction on the coordinates
-    result.x = modular_reduce(result.x);
-    result.y = modular_reduce(result.y);
-
-    // Export the values into an output buffer
-    auto buf = TRY(ByteBuffer::create_uninitialized(65));
-    buf[0] = 0x04;
-    export_big_endian(result.x, buf.bytes().slice(1, 32));
-    export_big_endian(result.y, buf.bytes().slice(33, 32));
-    return buf;
-}
-
-ErrorOr<ByteBuffer> SECP256r1::derive_premaster_key(ReadonlyBytes shared_point)
-{
-    VERIFY(shared_point.size() == 65);
-    VERIFY(shared_point[0] == 0x04);
-
-    ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(32));
-    premaster_key.overwrite(0, shared_point.data() + 1, 32);
-    return premaster_key;
-}
-
-ErrorOr<bool> SECP256r1::verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature)
-{
-    Crypto::ASN1::Decoder asn1_decoder(signature);
-    TRY(asn1_decoder.enter());
-
-    auto r_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
-    auto s_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
-
-    u256 r = 0u;
-    u256 s = 0u;
-    for (size_t i = 0; i < 8; i++) {
-        u256 rr = r_bigint.words()[i];
-        u256 ss = s_bigint.words()[i];
-        r |= (rr << (i * 32));
-        s |= (ss << (i * 32));
-    }
-
-    // z is the hash
-    u256 z = import_big_endian(hash.slice(0, 32));
-
-    u256 r_mo = to_montgomery_order(r);
-    u256 s_mo = to_montgomery_order(s);
-    u256 z_mo = to_montgomery_order(z);
-
-    u256 s_inv = modular_inverse_order(s_mo);
-
-    u256 u1 = modular_multiply_order(z_mo, s_inv);
-    u256 u2 = modular_multiply_order(r_mo, s_inv);
-
-    u1 = from_montgomery_order(u1);
-    u2 = from_montgomery_order(u2);
-
-    auto u1_buf = TRY(ByteBuffer::create_uninitialized(32));
-    export_big_endian(u1, u1_buf.bytes());
-    auto u2_buf = TRY(ByteBuffer::create_uninitialized(32));
-    export_big_endian(u2, u2_buf.bytes());
-
-    auto p1 = TRY(generate_public_key(u1_buf));
-    auto p2 = TRY(compute_coordinate(u2_buf, pubkey));
-
-    JacobianPoint point1 {
-        import_big_endian(TRY(p1.slice(1, 32))),
-        import_big_endian(TRY(p1.slice(33, 32))),
-        1u,
-    };
-
-    // Convert the input point into Montgomery form
-    point1.x = to_montgomery(point1.x);
-    point1.y = to_montgomery(point1.y);
-    point1.z = to_montgomery(point1.z);
-
-    VERIFY(is_point_on_curve(point1));
-
-    JacobianPoint point2 {
-        import_big_endian(TRY(p2.slice(1, 32))),
-        import_big_endian(TRY(p2.slice(33, 32))),
-        1u,
-    };
-
-    // Convert the input point into Montgomery form
-    point2.x = to_montgomery(point2.x);
-    point2.y = to_montgomery(point2.y);
-    point2.z = to_montgomery(point2.z);
-
-    VERIFY(is_point_on_curve(point2));
-
-    JacobianPoint result;
-    point_add(result, point1, point2);
-
-    // Convert from Jacobian coordinates back to Affine coordinates
-    convert_jacobian_to_affine(result);
-
-    // Make sure the resulting point is on the curve
-    VERIFY(is_point_on_curve(result));
-
-    // Convert the result back from Montgomery form
-    result.x = from_montgomery(result.x);
-    result.y = from_montgomery(result.y);
-    // Final modular reduction on the coordinates
-    result.x = modular_reduce(result.x);
-    result.y = modular_reduce(result.y);
-
-    return r.is_equal_to_constant_time(result.x);
-}
-
-}

+ 0 - 26
Userland/Libraries/LibCrypto/Curves/SECP256r1.h

@@ -1,26 +0,0 @@
-/*
- * Copyright (c) 2022, Michiel Visser <opensource@webmichiel.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
-
-#pragma once
-
-#include <AK/ByteBuffer.h>
-#include <AK/UFixedBigInt.h>
-#include <LibCrypto/Curves/EllipticCurve.h>
-
-namespace Crypto::Curves {
-
-class SECP256r1 : public EllipticCurve {
-public:
-    size_t key_size() override { return 1 + 2 * 32; }
-    ErrorOr<ByteBuffer> generate_private_key() override;
-    ErrorOr<ByteBuffer> generate_public_key(ReadonlyBytes a) override;
-    ErrorOr<ByteBuffer> compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes) override;
-    ErrorOr<ByteBuffer> derive_premaster_key(ReadonlyBytes shared_point) override;
-
-    ErrorOr<bool> verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature);
-};
-
-}

+ 0 - 635
Userland/Libraries/LibCrypto/Curves/SECP384r1.cpp

@@ -1,635 +0,0 @@
-/*
- * Copyright (c) 2023, Michiel Visser <opensource@webmichiel.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
-
-#include <AK/ByteReader.h>
-#include <AK/Endian.h>
-#include <AK/Random.h>
-#include <AK/StringBuilder.h>
-#include <AK/UFixedBigInt.h>
-#include <AK/UFixedBigIntDivision.h>
-#include <LibCrypto/ASN1/DER.h>
-#include <LibCrypto/Curves/SECP384r1.h>
-
-namespace Crypto::Curves {
-
-struct JacobianPoint {
-    u384 x { 0u };
-    u384 y { 0u };
-    u384 z { 0u };
-};
-
-static constexpr u384 calculate_modular_inverse_mod_r(u384 value)
-{
-    // Calculate the modular multiplicative inverse of value mod 2^384 using the extended euclidean algorithm
-    u768 old_r = value;
-    u768 r = static_cast<u768>(1u) << 384u;
-    u768 old_s = 1u;
-    u768 s = 0u;
-
-    while (!r.is_zero_constant_time()) {
-        u768 quotient = old_r / r;
-        u768 temp = r;
-        r = old_r - quotient * r;
-        old_r = temp;
-
-        temp = s;
-        s = old_s - quotient * s;
-        old_s = temp;
-    }
-
-    return old_s.low();
-}
-
-static constexpr u384 calculate_r2_mod(u384 modulus)
-{
-    // Calculate the value of R^2 mod modulus, where R = 2^384
-    u1536 r = static_cast<u1536>(1u) << 384u;
-    u1536 r2 = r * r;
-    u1536 result = r2 % static_cast<u1536>(modulus);
-    return result.low().low();
-}
-
-// SECP384r1 curve parameters
-static constexpr u384 PRIME { { 0x00000000ffffffffull, 0xffffffff00000000ull, 0xfffffffffffffffeull, 0xffffffffffffffffull, 0xffffffffffffffffull, 0xffffffffffffffffull } };
-static constexpr u384 A { { 0x00000000fffffffcull, 0xffffffff00000000ull, 0xfffffffffffffffeull, 0xffffffffffffffffull, 0xffffffffffffffffull, 0xffffffffffffffffull } };
-static constexpr u384 B { { 0x2a85c8edd3ec2aefull, 0xc656398d8a2ed19dull, 0x0314088f5013875aull, 0x181d9c6efe814112ull, 0x988e056be3f82d19ull, 0xb3312fa7e23ee7e4ull } };
-static constexpr u384 ORDER { { 0xecec196accc52973ull, 0x581a0db248b0a77aull, 0xc7634d81f4372ddfull, 0xffffffffffffffffull, 0xffffffffffffffffull, 0xffffffffffffffffull } };
-
-// Verify that A = -3 mod p, which is required for some optimizations
-static_assert(A == PRIME - 3);
-
-// Precomputed helper values for reduction and Montgomery multiplication
-static constexpr u384 REDUCE_PRIME = u384 { 0 } - PRIME;
-static constexpr u384 REDUCE_ORDER = u384 { 0 } - ORDER;
-static constexpr u384 PRIME_INVERSE_MOD_R = u384 { 0 } - calculate_modular_inverse_mod_r(PRIME);
-static constexpr u384 ORDER_INVERSE_MOD_R = u384 { 0 } - calculate_modular_inverse_mod_r(ORDER);
-static constexpr u384 R2_MOD_PRIME = calculate_r2_mod(PRIME);
-static constexpr u384 R2_MOD_ORDER = calculate_r2_mod(ORDER);
-
-static u384 import_big_endian(ReadonlyBytes data)
-{
-    VERIFY(data.size() == 48);
-
-    u64 f = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(0 * sizeof(u64))));
-    u64 e = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(1 * sizeof(u64))));
-    u64 d = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(2 * sizeof(u64))));
-    u64 c = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(3 * sizeof(u64))));
-    u64 b = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(4 * sizeof(u64))));
-    u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(5 * sizeof(u64))));
-
-    return u384 { { a, b, c, d, e, f } };
-}
-
-static void export_big_endian(u384 const& value, Bytes data)
-{
-    auto span = value.span();
-
-    u64 a = AK::convert_between_host_and_big_endian(span[0]);
-    u64 b = AK::convert_between_host_and_big_endian(span[1]);
-    u64 c = AK::convert_between_host_and_big_endian(span[2]);
-    u64 d = AK::convert_between_host_and_big_endian(span[3]);
-    u64 e = AK::convert_between_host_and_big_endian(span[4]);
-    u64 f = AK::convert_between_host_and_big_endian(span[5]);
-
-    ByteReader::store(data.offset_pointer(5 * sizeof(u64)), a);
-    ByteReader::store(data.offset_pointer(4 * sizeof(u64)), b);
-    ByteReader::store(data.offset_pointer(3 * sizeof(u64)), c);
-    ByteReader::store(data.offset_pointer(2 * sizeof(u64)), d);
-    ByteReader::store(data.offset_pointer(1 * sizeof(u64)), e);
-    ByteReader::store(data.offset_pointer(0 * sizeof(u64)), f);
-}
-
-static constexpr u384 select(u384 const& left, u384 const& right, bool condition)
-{
-    // If condition = 0 return left else right
-    u384 mask = (u384)condition - 1;
-
-    return (left & mask) | (right & ~mask);
-}
-
-static constexpr u768 multiply(u384 const& left, u384 const& right)
-{
-    return left.wide_multiply(right);
-}
-
-static constexpr u384 modular_reduce(u384 const& value)
-{
-    // Add -prime % 2^384
-    bool carry = false;
-    u384 other = value.addc(REDUCE_PRIME, carry);
-
-    // Check for overflow
-    return select(value, other, carry);
-}
-
-static constexpr u384 modular_reduce_order(u384 const& value)
-{
-    // Add -order % 2^384
-    bool carry = false;
-    u384 other = value.addc(REDUCE_ORDER, carry);
-
-    // Check for overflow
-    return select(value, other, carry);
-}
-
-static constexpr u384 modular_add(u384 const& left, u384 const& right, bool carry_in = false)
-{
-    bool carry = carry_in;
-    u384 output = left.addc(right, carry);
-
-    // If there is a carry, subtract p by adding 2^384 - p
-    u384 addend = select(0u, REDUCE_PRIME, carry);
-    carry = false;
-    output = output.addc(addend, carry);
-
-    // If there is still a carry, subtract p by adding 2^384 - p
-    addend = select(0u, REDUCE_PRIME, carry);
-    return output + addend;
-}
-
-static constexpr u384 modular_sub(u384 const& left, u384 const& right)
-{
-    bool borrow = false;
-    u384 output = left.subc(right, borrow);
-
-    // If there is a borrow, add p by subtracting 2^384 - p
-    u384 sub = select(0u, REDUCE_PRIME, borrow);
-    borrow = false;
-    output = output.subc(sub, borrow);
-
-    // If there is still a borrow, add p by subtracting 2^384 - p
-    sub = select(0u, REDUCE_PRIME, borrow);
-    return output - sub;
-}
-
-static constexpr u384 modular_multiply(u384 const& left, u384 const& right)
-{
-    // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
-    // This requires that the inputs to this function are in Montgomery form.
-
-    // T = left * right
-    u768 mult = multiply(left, right);
-
-    // m = ((T mod R) * curve_p')
-    u768 m = multiply(mult.low(), PRIME_INVERSE_MOD_R);
-
-    // mp = (m mod R) * curve_p
-    u768 mp = multiply(m.low(), PRIME);
-
-    // t = (T + mp)
-    bool carry = false;
-    mult.low().addc(mp.low(), carry);
-
-    // output = t / R
-    return modular_add(mult.high(), mp.high(), carry);
-}
-
-static constexpr u384 modular_square(u384 const& value)
-{
-    return modular_multiply(value, value);
-}
-
-static constexpr u384 to_montgomery(u384 const& value)
-{
-    return modular_multiply(value, R2_MOD_PRIME);
-}
-
-static constexpr u384 from_montgomery(u384 const& value)
-{
-    return modular_multiply(value, 1u);
-}
-
-static constexpr u384 modular_inverse(u384 const& value)
-{
-    // Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
-    // Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
-    u384 base = value;
-    u384 result = to_montgomery(1u);
-    u384 prime_minus_2 = PRIME - 2u;
-
-    for (size_t i = 0; i < 384; i++) {
-        if ((prime_minus_2 & 1u) == 1u) {
-            result = modular_multiply(result, base);
-        }
-        base = modular_square(base);
-        prime_minus_2 >>= 1u;
-    }
-
-    return result;
-}
-
-static constexpr u384 modular_add_order(u384 const& left, u384 const& right, bool carry_in = false)
-{
-    bool carry = carry_in;
-    u384 output = left.addc(right, carry);
-
-    // If there is a carry, subtract n by adding 2^384 - n
-    u384 addend = select(0u, REDUCE_ORDER, carry);
-    carry = false;
-    output = output.addc(addend, carry);
-
-    // If there is still a carry, subtract n by adding 2^384 - n
-    addend = select(0u, REDUCE_ORDER, carry);
-    return output + addend;
-}
-
-static constexpr u384 modular_multiply_order(u384 const& left, u384 const& right)
-{
-    // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
-    // This requires that the inputs to this function are in Montgomery form.
-
-    // T = left * right
-    u768 mult = multiply(left, right);
-
-    // m = ((T mod R) * curve_n')
-    u768 m = multiply(mult.low(), ORDER_INVERSE_MOD_R);
-
-    // mp = (m mod R) * curve_n
-    u768 mp = multiply(m.low(), ORDER);
-
-    // t = (T + mp)
-    bool carry = false;
-    mult.low().addc(mp.low(), carry);
-
-    // output = t / R
-    return modular_add_order(mult.high(), mp.high(), carry);
-}
-
-static constexpr u384 modular_square_order(u384 const& value)
-{
-    return modular_multiply_order(value, value);
-}
-
-static constexpr u384 to_montgomery_order(u384 const& value)
-{
-    return modular_multiply_order(value, R2_MOD_ORDER);
-}
-
-static constexpr u384 from_montgomery_order(u384 const& value)
-{
-    return modular_multiply_order(value, 1u);
-}
-
-static constexpr u384 modular_inverse_order(u384 const& value)
-{
-    // Modular inverse modulo the curve order can be computed using Fermat's little theorem: a^(n-2) mod n = a^-1 mod n.
-    // Calculating a^(n-2) mod n can be done using the square-and-multiply exponentiation method, as n-2 is constant.
-    u384 base = value;
-    u384 result = to_montgomery_order(1u);
-    u384 order_minus_2 = ORDER - 2u;
-
-    for (size_t i = 0; i < 384; i++) {
-        if ((order_minus_2 & 1u) == 1u) {
-            result = modular_multiply_order(result, base);
-        }
-        base = modular_square_order(base);
-        order_minus_2 >>= 1u;
-    }
-
-    return result;
-}
-
-static void point_double(JacobianPoint& output_point, JacobianPoint const& point)
-{
-    // Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
-
-    // if (Y == 0)
-    //   return POINT_AT_INFINITY
-    if (point.y.is_zero_constant_time()) {
-        VERIFY_NOT_REACHED();
-    }
-
-    u384 temp;
-
-    // Y2 = Y^2
-    u384 y2 = modular_square(point.y);
-
-    // S = 4*X*Y2
-    u384 s = modular_multiply(point.x, y2);
-    s = modular_add(s, s);
-    s = modular_add(s, s);
-
-    // M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
-    // This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
-    // This simplification only works because a = -3 mod p
-    temp = modular_square(point.z);
-    u384 m = modular_add(point.x, temp);
-    temp = modular_sub(point.x, temp);
-    m = modular_multiply(m, temp);
-    temp = modular_add(m, m);
-    m = modular_add(m, temp);
-
-    // X' = M^2 - 2*S
-    u384 xp = modular_square(m);
-    xp = modular_sub(xp, s);
-    xp = modular_sub(xp, s);
-
-    // Y' = M*(S - X') - 8*Y2^2
-    u384 yp = modular_sub(s, xp);
-    yp = modular_multiply(yp, m);
-    temp = modular_square(y2);
-    temp = modular_add(temp, temp);
-    temp = modular_add(temp, temp);
-    temp = modular_add(temp, temp);
-    yp = modular_sub(yp, temp);
-
-    // Z' = 2*Y*Z
-    u384 zp = modular_multiply(point.y, point.z);
-    zp = modular_add(zp, zp);
-
-    // return (X', Y', Z')
-    output_point.x = xp;
-    output_point.y = yp;
-    output_point.z = zp;
-}
-
-static void point_add(JacobianPoint& output_point, JacobianPoint const& point_a, JacobianPoint const& point_b)
-{
-    // Based on "Point Addition" from  http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
-    if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
-        output_point.x = point_b.x;
-        output_point.y = point_b.y;
-        output_point.z = point_b.z;
-        return;
-    }
-
-    u384 temp;
-
-    temp = modular_square(point_b.z);
-    // U1 = X1*Z2^2
-    u384 u1 = modular_multiply(point_a.x, temp);
-    // S1 = Y1*Z2^3
-    u384 s1 = modular_multiply(point_a.y, temp);
-    s1 = modular_multiply(s1, point_b.z);
-
-    temp = modular_square(point_a.z);
-    // U2 = X2*Z1^2
-    u384 u2 = modular_multiply(point_b.x, temp);
-    // S2 = Y2*Z1^3
-    u384 s2 = modular_multiply(point_b.y, temp);
-    s2 = modular_multiply(s2, point_a.z);
-
-    // if (U1 == U2)
-    //   if (S1 != S2)
-    //     return POINT_AT_INFINITY
-    //   else
-    //     return POINT_DOUBLE(X1, Y1, Z1)
-    if (u1.is_equal_to_constant_time(u2)) {
-        if (s1.is_equal_to_constant_time(s2)) {
-            point_double(output_point, point_a);
-            return;
-        } else {
-            VERIFY_NOT_REACHED();
-        }
-    }
-
-    // H = U2 - U1
-    u384 h = modular_sub(u2, u1);
-    u384 h2 = modular_square(h);
-    u384 h3 = modular_multiply(h2, h);
-    // R = S2 - S1
-    u384 r = modular_sub(s2, s1);
-    // X3 = R^2 - H^3 - 2*U1*H^2
-    u384 x3 = modular_square(r);
-    x3 = modular_sub(x3, h3);
-    temp = modular_multiply(u1, h2);
-    temp = modular_add(temp, temp);
-    x3 = modular_sub(x3, temp);
-    // Y3 = R*(U1*H^2 - X3) - S1*H^3
-    u384 y3 = modular_multiply(u1, h2);
-    y3 = modular_sub(y3, x3);
-    y3 = modular_multiply(y3, r);
-    temp = modular_multiply(s1, h3);
-    y3 = modular_sub(y3, temp);
-    // Z3 = H*Z1*Z2
-    u384 z3 = modular_multiply(h, point_a.z);
-    z3 = modular_multiply(z3, point_b.z);
-    // return (X3, Y3, Z3)
-    output_point.x = x3;
-    output_point.y = y3;
-    output_point.z = z3;
-}
-
-static void convert_jacobian_to_affine(JacobianPoint& point)
-{
-    u384 temp;
-    // X' = X/Z^2
-    temp = modular_square(point.z);
-    temp = modular_inverse(temp);
-    point.x = modular_multiply(point.x, temp);
-    // Y' = Y/Z^3
-    temp = modular_square(point.z);
-    temp = modular_multiply(temp, point.z);
-    temp = modular_inverse(temp);
-    point.y = modular_multiply(point.y, temp);
-    // Z' = 1
-    point.z = to_montgomery(1u);
-}
-
-static bool is_point_on_curve(JacobianPoint const& point)
-{
-    // This check requires the point to be in Montgomery form, with Z=1
-    u384 temp, temp2;
-
-    // Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
-    temp = modular_square(point.y);
-    temp2 = modular_square(point.x);
-    temp2 = modular_multiply(temp2, point.x);
-    temp = modular_sub(temp, temp2);
-    temp = modular_add(temp, point.x);
-    temp = modular_add(temp, point.x);
-    temp = modular_add(temp, point.x);
-    temp = modular_sub(temp, to_montgomery(B));
-    temp = modular_reduce(temp);
-
-    return temp.is_zero_constant_time() && point.z.is_equal_to_constant_time(to_montgomery(1u));
-}
-
-ErrorOr<ByteBuffer> SECP384r1::generate_private_key()
-{
-    auto buffer = TRY(ByteBuffer::create_uninitialized(48));
-    fill_with_random(buffer);
-    return buffer;
-}
-
-ErrorOr<ByteBuffer> SECP384r1::generate_public_key(ReadonlyBytes a)
-{
-    // clang-format off
-    u8 generator_bytes[97] {
-        0x04,
-        0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, 0xF3, 0x20, 0xAD, 0x74,
-        0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98, 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38,
-        0x55, 0x02, 0xF2, 0x5D, 0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7,
-        0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, 0x92, 0x92, 0xDC, 0x29,
-        0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C, 0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0,
-        0x0A, 0x60, 0xB1, 0xCE, 0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F,
-    };
-    // clang-format on
-    return compute_coordinate(a, { generator_bytes, 97 });
-}
-
-ErrorOr<ByteBuffer> SECP384r1::compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes)
-{
-    VERIFY(scalar_bytes.size() == 48);
-
-    u384 scalar = import_big_endian(scalar_bytes);
-    // FIXME: This will slightly bias the distribution of client secrets
-    scalar = modular_reduce_order(scalar);
-    if (scalar.is_zero_constant_time())
-        return Error::from_string_literal("SECP384r1: scalar is zero");
-
-    // Make sure the point is uncompressed
-    if (point_bytes.size() != 97 || point_bytes[0] != 0x04)
-        return Error::from_string_literal("SECP384r1: point is not uncompressed format");
-
-    JacobianPoint point {
-        import_big_endian(point_bytes.slice(1, 48)),
-        import_big_endian(point_bytes.slice(49, 48)),
-        1u,
-    };
-
-    // Convert the input point into Montgomery form
-    point.x = to_montgomery(point.x);
-    point.y = to_montgomery(point.y);
-    point.z = to_montgomery(point.z);
-
-    // Check that the point is on the curve
-    if (!is_point_on_curve(point))
-        return Error::from_string_literal("SECP384r1: point is not on the curve");
-
-    JacobianPoint result;
-    JacobianPoint temp_result;
-
-    // Calculate the scalar times point multiplication in constant time
-    for (auto i = 0; i < 384; i++) {
-        point_add(temp_result, result, point);
-
-        auto condition = (scalar & 1u) == 1u;
-        result.x = select(result.x, temp_result.x, condition);
-        result.y = select(result.y, temp_result.y, condition);
-        result.z = select(result.z, temp_result.z, condition);
-
-        point_double(point, point);
-        scalar >>= 1u;
-    }
-
-    // Convert from Jacobian coordinates back to Affine coordinates
-    convert_jacobian_to_affine(result);
-
-    // Make sure the resulting point is on the curve
-    VERIFY(is_point_on_curve(result));
-
-    // Convert the result back from Montgomery form
-    result.x = from_montgomery(result.x);
-    result.y = from_montgomery(result.y);
-    // Final modular reduction on the coordinates
-    result.x = modular_reduce(result.x);
-    result.y = modular_reduce(result.y);
-
-    // Export the values into an output buffer
-    auto buf = TRY(ByteBuffer::create_uninitialized(97));
-    buf[0] = 0x04;
-    export_big_endian(result.x, buf.bytes().slice(1, 48));
-    export_big_endian(result.y, buf.bytes().slice(49, 48));
-    return buf;
-}
-
-ErrorOr<ByteBuffer> SECP384r1::derive_premaster_key(ReadonlyBytes shared_point)
-{
-    VERIFY(shared_point.size() == 97);
-    VERIFY(shared_point[0] == 0x04);
-
-    ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(48));
-    premaster_key.overwrite(0, shared_point.data() + 1, 48);
-    return premaster_key;
-}
-
-ErrorOr<bool> SECP384r1::verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature)
-{
-    Crypto::ASN1::Decoder asn1_decoder(signature);
-    TRY(asn1_decoder.enter());
-
-    auto r_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
-    auto s_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
-
-    u384 r = 0u;
-    u384 s = 0u;
-    for (size_t i = 0; i < 12; i++) {
-        u384 rr = r_bigint.words()[i];
-        u384 ss = s_bigint.words()[i];
-        r |= (rr << (i * 32));
-        s |= (ss << (i * 32));
-    }
-
-    // z is the hash
-    u384 z = import_big_endian(hash.slice(0, 48));
-
-    u384 r_mo = to_montgomery_order(r);
-    u384 s_mo = to_montgomery_order(s);
-    u384 z_mo = to_montgomery_order(z);
-
-    u384 s_inv = modular_inverse_order(s_mo);
-
-    u384 u1 = modular_multiply_order(z_mo, s_inv);
-    u384 u2 = modular_multiply_order(r_mo, s_inv);
-
-    u1 = from_montgomery_order(u1);
-    u2 = from_montgomery_order(u2);
-
-    auto u1_buf = TRY(ByteBuffer::create_uninitialized(48));
-    export_big_endian(u1, u1_buf.bytes());
-    auto u2_buf = TRY(ByteBuffer::create_uninitialized(48));
-    export_big_endian(u2, u2_buf.bytes());
-
-    auto p1 = TRY(generate_public_key(u1_buf));
-    auto p2 = TRY(compute_coordinate(u2_buf, pubkey));
-
-    JacobianPoint point1 {
-        import_big_endian(TRY(p1.slice(1, 48))),
-        import_big_endian(TRY(p1.slice(49, 48))),
-        1u,
-    };
-
-    // Convert the input point into Montgomery form
-    point1.x = to_montgomery(point1.x);
-    point1.y = to_montgomery(point1.y);
-    point1.z = to_montgomery(point1.z);
-
-    VERIFY(is_point_on_curve(point1));
-
-    JacobianPoint point2 {
-        import_big_endian(TRY(p2.slice(1, 48))),
-        import_big_endian(TRY(p2.slice(49, 48))),
-        1u,
-    };
-
-    // Convert the input point into Montgomery form
-    point2.x = to_montgomery(point2.x);
-    point2.y = to_montgomery(point2.y);
-    point2.z = to_montgomery(point2.z);
-
-    VERIFY(is_point_on_curve(point2));
-
-    JacobianPoint result;
-    point_add(result, point1, point2);
-
-    // Convert from Jacobian coordinates back to Affine coordinates
-    convert_jacobian_to_affine(result);
-
-    // Make sure the resulting point is on the curve
-    VERIFY(is_point_on_curve(result));
-
-    // Convert the result back from Montgomery form
-    result.x = from_montgomery(result.x);
-    result.y = from_montgomery(result.y);
-    // Final modular reduction on the coordinates
-    result.x = modular_reduce(result.x);
-    result.y = modular_reduce(result.y);
-
-    return r.is_equal_to_constant_time(result.x);
-}
-
-}

+ 0 - 26
Userland/Libraries/LibCrypto/Curves/SECP384r1.h

@@ -1,26 +0,0 @@
-/*
- * Copyright (c) 2023, Michiel Visser <opensource@webmichiel.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
-
-#pragma once
-
-#include <AK/ByteBuffer.h>
-#include <AK/UFixedBigInt.h>
-#include <LibCrypto/Curves/EllipticCurve.h>
-
-namespace Crypto::Curves {
-
-class SECP384r1 : public EllipticCurve {
-public:
-    size_t key_size() override { return 1 + 2 * 48; }
-    ErrorOr<ByteBuffer> generate_private_key() override;
-    ErrorOr<ByteBuffer> generate_public_key(ReadonlyBytes a) override;
-    ErrorOr<ByteBuffer> compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes) override;
-    ErrorOr<ByteBuffer> derive_premaster_key(ReadonlyBytes shared_point) override;
-
-    ErrorOr<bool> verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature);
-};
-
-}

+ 1 - 2
Userland/Libraries/LibTLS/HandshakeServer.cpp

@@ -13,8 +13,7 @@
 #include <LibCrypto/ASN1/DER.h>
 #include <LibCrypto/ASN1/DER.h>
 #include <LibCrypto/Curves/Ed25519.h>
 #include <LibCrypto/Curves/Ed25519.h>
 #include <LibCrypto/Curves/EllipticCurve.h>
 #include <LibCrypto/Curves/EllipticCurve.h>
-#include <LibCrypto/Curves/SECP256r1.h>
-#include <LibCrypto/Curves/SECP384r1.h>
+#include <LibCrypto/Curves/SECPxxxr1.h>
 #include <LibCrypto/Curves/X25519.h>
 #include <LibCrypto/Curves/X25519.h>
 #include <LibCrypto/Curves/X448.h>
 #include <LibCrypto/Curves/X448.h>
 #include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
 #include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>

+ 1 - 2
Userland/Libraries/LibTLS/TLSv12.cpp

@@ -15,8 +15,7 @@
 #include <LibCrypto/ASN1/ASN1.h>
 #include <LibCrypto/ASN1/ASN1.h>
 #include <LibCrypto/ASN1/PEM.h>
 #include <LibCrypto/ASN1/PEM.h>
 #include <LibCrypto/Curves/Ed25519.h>
 #include <LibCrypto/Curves/Ed25519.h>
-#include <LibCrypto/Curves/SECP256r1.h>
-#include <LibCrypto/Curves/SECP384r1.h>
+#include <LibCrypto/Curves/SECPxxxr1.h>
 #include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
 #include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
 #include <LibCrypto/PK/Code/EMSA_PSS.h>
 #include <LibCrypto/PK/Code/EMSA_PSS.h>
 #include <LibFileSystem/FileSystem.h>
 #include <LibFileSystem/FileSystem.h>