LibCrypto: Move large functions to cpp file
If they use up so much stack space, contain (sometimes several) loops, and take a noticable amount of time anyway, then 'inline' is probably going to be ignored by the compiler anyway.
This commit is contained in:
parent
bbed5b99fd
commit
b7589ff4b6
Notes:
sideshowbarker
2024-07-19 03:33:56 +09:00
Author: https://github.com/BenWiederhake Commit: https://github.com/SerenityOS/serenity/commit/b7589ff4b64 Pull-request: https://github.com/SerenityOS/serenity/pull/3168 Reviewed-by: https://github.com/alimpfard
3 changed files with 371 additions and 326 deletions
|
@ -1,12 +1,13 @@
|
|||
set(SOURCES
|
||||
BigInt/UnsignedBigInteger.cpp
|
||||
BigInt/SignedBigInteger.cpp
|
||||
BigInt/UnsignedBigInteger.cpp
|
||||
Checksum/Adler32.cpp
|
||||
Checksum/CRC32.cpp
|
||||
Cipher/AES.cpp
|
||||
Hash/MD5.cpp
|
||||
Hash/SHA1.cpp
|
||||
Hash/SHA2.cpp
|
||||
NumberTheory/ModularFunctions.cpp
|
||||
PK/RSA.cpp
|
||||
)
|
||||
|
||||
|
|
362
Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
Normal file
362
Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
Normal file
|
@ -0,0 +1,362 @@
|
|||
/*
|
||||
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <LibCrypto/NumberTheory/ModularFunctions.h>
|
||||
|
||||
namespace Crypto {
|
||||
namespace NumberTheory {
|
||||
|
||||
UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
|
||||
{
|
||||
if (b == 1)
|
||||
return { 1 };
|
||||
|
||||
UnsignedBigInteger one { 1 };
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_plus;
|
||||
UnsignedBigInteger temp_minus;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
UnsignedBigInteger d;
|
||||
|
||||
auto a = a_;
|
||||
auto u = a;
|
||||
if (a.words()[0] % 2 == 0) {
|
||||
// u += b
|
||||
UnsignedBigInteger::add_without_allocation(u, b, temp_plus);
|
||||
u.set_to(temp_plus);
|
||||
}
|
||||
|
||||
auto v = b;
|
||||
UnsignedBigInteger x { 0 };
|
||||
|
||||
// d = b - 1
|
||||
UnsignedBigInteger::subtract_without_allocation(b, one, d);
|
||||
|
||||
while (!(v == 1)) {
|
||||
while (v < u) {
|
||||
// u -= v
|
||||
UnsignedBigInteger::subtract_without_allocation(u, v, temp_minus);
|
||||
u.set_to(temp_minus);
|
||||
|
||||
// d += x
|
||||
UnsignedBigInteger::add_without_allocation(d, x, temp_plus);
|
||||
d.set_to(temp_plus);
|
||||
|
||||
while (u.words()[0] % 2 == 0) {
|
||||
if (d.words()[0] % 2 == 1) {
|
||||
// d += b
|
||||
UnsignedBigInteger::add_without_allocation(d, b, temp_plus);
|
||||
d.set_to(temp_plus);
|
||||
}
|
||||
|
||||
// u /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(u, 2, temp_quotient, temp_remainder);
|
||||
u.set_to(temp_quotient);
|
||||
|
||||
// d /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(d, 2, temp_quotient, temp_remainder);
|
||||
d.set_to(temp_quotient);
|
||||
}
|
||||
}
|
||||
|
||||
// v -= u
|
||||
UnsignedBigInteger::subtract_without_allocation(v, u, temp_minus);
|
||||
v.set_to(temp_minus);
|
||||
|
||||
// x += d
|
||||
UnsignedBigInteger::add_without_allocation(x, d, temp_plus);
|
||||
x.set_to(temp_plus);
|
||||
|
||||
while (v.words()[0] % 2 == 0) {
|
||||
if (x.words()[0] % 2 == 1) {
|
||||
// x += b
|
||||
UnsignedBigInteger::add_without_allocation(x, b, temp_plus);
|
||||
x.set_to(temp_plus);
|
||||
}
|
||||
|
||||
// v /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(v, 2, temp_quotient, temp_remainder);
|
||||
v.set_to(temp_quotient);
|
||||
|
||||
// x /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(x, 2, temp_quotient, temp_remainder);
|
||||
x.set_to(temp_quotient);
|
||||
}
|
||||
}
|
||||
|
||||
// x % b
|
||||
UnsignedBigInteger::divide_without_allocation(x, b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
return temp_remainder;
|
||||
}
|
||||
|
||||
UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
|
||||
{
|
||||
if (m == 1)
|
||||
return 0;
|
||||
|
||||
UnsignedBigInteger ep { e };
|
||||
UnsignedBigInteger base { b };
|
||||
UnsignedBigInteger exp { 1 };
|
||||
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_multiply;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
|
||||
while (!(ep < 1)) {
|
||||
#ifdef NT_DEBUG
|
||||
dbg() << ep.to_base10();
|
||||
#endif
|
||||
if (ep.words()[0] % 2 == 1) {
|
||||
// exp = (exp * base) % m;
|
||||
UnsignedBigInteger::multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
|
||||
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
exp.set_to(temp_remainder);
|
||||
}
|
||||
|
||||
// ep = ep / 2;
|
||||
UnsignedBigInteger::divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
|
||||
ep.set_to(temp_quotient);
|
||||
|
||||
// base = (base * base) % m;
|
||||
UnsignedBigInteger::multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
|
||||
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
base.set_to(temp_remainder);
|
||||
}
|
||||
return exp;
|
||||
}
|
||||
|
||||
static void GCD_without_allocation(
|
||||
const UnsignedBigInteger& a,
|
||||
const UnsignedBigInteger& b,
|
||||
UnsignedBigInteger& temp_a,
|
||||
UnsignedBigInteger& temp_b,
|
||||
UnsignedBigInteger& temp_1,
|
||||
UnsignedBigInteger& temp_2,
|
||||
UnsignedBigInteger& temp_3,
|
||||
UnsignedBigInteger& temp_4,
|
||||
UnsignedBigInteger& temp_quotient,
|
||||
UnsignedBigInteger& temp_remainder,
|
||||
UnsignedBigInteger& output)
|
||||
{
|
||||
temp_a.set_to(a);
|
||||
temp_b.set_to(b);
|
||||
for (;;) {
|
||||
if (temp_a == 0) {
|
||||
output.set_to(temp_b);
|
||||
return;
|
||||
}
|
||||
|
||||
// temp_b %= temp_a
|
||||
UnsignedBigInteger::divide_without_allocation(temp_b, temp_a, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
temp_b.set_to(temp_remainder);
|
||||
if (temp_b == 0) {
|
||||
output.set_to(temp_a);
|
||||
return;
|
||||
}
|
||||
|
||||
// temp_a %= temp_b
|
||||
UnsignedBigInteger::divide_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
temp_a.set_to(temp_remainder);
|
||||
}
|
||||
}
|
||||
|
||||
UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
|
||||
{
|
||||
UnsignedBigInteger temp_a;
|
||||
UnsignedBigInteger temp_b;
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
UnsignedBigInteger output;
|
||||
|
||||
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
|
||||
{
|
||||
UnsignedBigInteger temp_a;
|
||||
UnsignedBigInteger temp_b;
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
UnsignedBigInteger gcd_output;
|
||||
UnsignedBigInteger output { 0 };
|
||||
|
||||
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
|
||||
if (gcd_output == 0) {
|
||||
#ifdef NT_DEBUG
|
||||
dbg() << "GCD is zero";
|
||||
#endif
|
||||
return output;
|
||||
}
|
||||
|
||||
// output = (a / gcd_output) * b
|
||||
UnsignedBigInteger::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
UnsignedBigInteger::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, temp_4, output);
|
||||
|
||||
#ifdef NT_DEBUG
|
||||
dbg() << "quot: " << temp_quotient << " rem: " << temp_remainder << " out: " << output;
|
||||
#endif
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
|
||||
{
|
||||
// Written using Wikipedia:
|
||||
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
|
||||
ASSERT(!(n < 4));
|
||||
auto predecessor = n.minus({ 1 });
|
||||
auto d = predecessor;
|
||||
size_t r = 0;
|
||||
|
||||
{
|
||||
auto div_result = d.divided_by(2);
|
||||
while (div_result.remainder == 0) {
|
||||
d = div_result.quotient;
|
||||
div_result = d.divided_by(2);
|
||||
++r;
|
||||
}
|
||||
}
|
||||
if (r == 0) {
|
||||
// n - 1 is odd, so n was even. But there is only one even prime:
|
||||
return n == 2;
|
||||
}
|
||||
|
||||
for (auto a : tests) {
|
||||
// Technically: ASSERT(2 <= a && a <= n - 2)
|
||||
ASSERT(a < n);
|
||||
auto x = ModularPower(a, d, n);
|
||||
if (x == 1 || x == predecessor)
|
||||
continue;
|
||||
bool skip_this_witness = false;
|
||||
// r − 1 iterations.
|
||||
for (size_t i = 0; i < r - 1; ++i) {
|
||||
x = ModularPower(x, 2, n);
|
||||
if (x == predecessor) {
|
||||
skip_this_witness = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (skip_this_witness)
|
||||
continue;
|
||||
return false; // "composite"
|
||||
}
|
||||
|
||||
return true; // "probably prime"
|
||||
}
|
||||
|
||||
UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
|
||||
{
|
||||
ASSERT(min < max_excluded);
|
||||
auto range = max_excluded.minus(min);
|
||||
UnsignedBigInteger base;
|
||||
auto size = range.trimmed_length() * sizeof(u32) + 2;
|
||||
// "+2" is intentional (see below).
|
||||
// Also, if we're about to crash anyway, at least produce a nice error:
|
||||
ASSERT(size < 8 * MB);
|
||||
u8 buf[size];
|
||||
AK::fill_with_random(buf, size);
|
||||
UnsignedBigInteger random { buf, size };
|
||||
// At this point, `random` is a large number, in the range [0, 256^size).
|
||||
// To get down to the actual range, we could just compute random % range.
|
||||
// This introduces "modulo bias". However, since we added 2 to `size`,
|
||||
// we know that the generated range is at least 65536 times as large as the
|
||||
// required range! This means that the modulo bias is only 0.0015%, if all
|
||||
// inputs are chosen adversarially. Let's hope this is good enough.
|
||||
auto divmod = random.divided_by(range);
|
||||
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
|
||||
return divmod.remainder.plus(min);
|
||||
}
|
||||
|
||||
bool is_probably_prime(const UnsignedBigInteger& p)
|
||||
{
|
||||
// Is it a small number?
|
||||
if (p < 49) {
|
||||
u32 p_value = p.words()[0];
|
||||
// Is it a very small prime?
|
||||
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
|
||||
return true;
|
||||
// Is it the multiple of a very small prime?
|
||||
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
|
||||
return false;
|
||||
// Then it must be a prime, but not a very small prime, like 37.
|
||||
return true;
|
||||
}
|
||||
|
||||
Vector<UnsignedBigInteger, 256> tests;
|
||||
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
|
||||
tests.append(UnsignedBigInteger(2));
|
||||
tests.append(UnsignedBigInteger(3));
|
||||
tests.append(UnsignedBigInteger(5));
|
||||
tests.append(UnsignedBigInteger(7));
|
||||
tests.append(UnsignedBigInteger(11));
|
||||
tests.append(UnsignedBigInteger(13));
|
||||
UnsignedBigInteger seventeen { 17 };
|
||||
for (size_t i = tests.size(); i < 256; ++i) {
|
||||
tests.append(random_number(seventeen, p.minus(2)));
|
||||
}
|
||||
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
|
||||
// With 200 random numbers, this would mean an error of about 2^-400.
|
||||
// So we don't need to worry too much about the quality of the random numbers.
|
||||
|
||||
return MR_primality_test(p, tests);
|
||||
}
|
||||
|
||||
UnsignedBigInteger random_big_prime(size_t bits)
|
||||
{
|
||||
ASSERT(bits >= 33);
|
||||
UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
|
||||
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
|
||||
for (;;) {
|
||||
auto p = random_number(min, max);
|
||||
if ((p.words()[0] & 1) == 0) {
|
||||
// An even number is definitely not a large prime.
|
||||
continue;
|
||||
}
|
||||
if (is_probably_prime(p))
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
|
@ -34,132 +34,8 @@
|
|||
namespace Crypto {
|
||||
namespace NumberTheory {
|
||||
|
||||
inline UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
|
||||
{
|
||||
if (b == 1)
|
||||
return { 1 };
|
||||
|
||||
UnsignedBigInteger one { 1 };
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_plus;
|
||||
UnsignedBigInteger temp_minus;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
UnsignedBigInteger d;
|
||||
|
||||
auto a = a_;
|
||||
auto u = a;
|
||||
if (a.words()[0] % 2 == 0) {
|
||||
// u += b
|
||||
UnsignedBigInteger::add_without_allocation(u, b, temp_plus);
|
||||
u.set_to(temp_plus);
|
||||
}
|
||||
|
||||
auto v = b;
|
||||
UnsignedBigInteger x { 0 };
|
||||
|
||||
// d = b - 1
|
||||
UnsignedBigInteger::subtract_without_allocation(b, one, d);
|
||||
|
||||
while (!(v == 1)) {
|
||||
while (v < u) {
|
||||
// u -= v
|
||||
UnsignedBigInteger::subtract_without_allocation(u, v, temp_minus);
|
||||
u.set_to(temp_minus);
|
||||
|
||||
// d += x
|
||||
UnsignedBigInteger::add_without_allocation(d, x, temp_plus);
|
||||
d.set_to(temp_plus);
|
||||
|
||||
while (u.words()[0] % 2 == 0) {
|
||||
if (d.words()[0] % 2 == 1) {
|
||||
// d += b
|
||||
UnsignedBigInteger::add_without_allocation(d, b, temp_plus);
|
||||
d.set_to(temp_plus);
|
||||
}
|
||||
|
||||
// u /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(u, 2, temp_quotient, temp_remainder);
|
||||
u.set_to(temp_quotient);
|
||||
|
||||
// d /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(d, 2, temp_quotient, temp_remainder);
|
||||
d.set_to(temp_quotient);
|
||||
}
|
||||
}
|
||||
|
||||
// v -= u
|
||||
UnsignedBigInteger::subtract_without_allocation(v, u, temp_minus);
|
||||
v.set_to(temp_minus);
|
||||
|
||||
// x += d
|
||||
UnsignedBigInteger::add_without_allocation(x, d, temp_plus);
|
||||
x.set_to(temp_plus);
|
||||
|
||||
while (v.words()[0] % 2 == 0) {
|
||||
if (x.words()[0] % 2 == 1) {
|
||||
// x += b
|
||||
UnsignedBigInteger::add_without_allocation(x, b, temp_plus);
|
||||
x.set_to(temp_plus);
|
||||
}
|
||||
|
||||
// v /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(v, 2, temp_quotient, temp_remainder);
|
||||
v.set_to(temp_quotient);
|
||||
|
||||
// x /= 2
|
||||
UnsignedBigInteger::divide_u16_without_allocation(x, 2, temp_quotient, temp_remainder);
|
||||
x.set_to(temp_quotient);
|
||||
}
|
||||
}
|
||||
|
||||
// x % b
|
||||
UnsignedBigInteger::divide_without_allocation(x, b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
return temp_remainder;
|
||||
}
|
||||
|
||||
static UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
|
||||
{
|
||||
if (m == 1)
|
||||
return 0;
|
||||
|
||||
UnsignedBigInteger ep { e };
|
||||
UnsignedBigInteger base { b };
|
||||
UnsignedBigInteger exp { 1 };
|
||||
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_multiply;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
|
||||
while (!(ep < 1)) {
|
||||
#ifdef NT_DEBUG
|
||||
dbg() << ep.to_base10();
|
||||
#endif
|
||||
if (ep.words()[0] % 2 == 1) {
|
||||
// exp = (exp * base) % m;
|
||||
UnsignedBigInteger::multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
|
||||
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
exp.set_to(temp_remainder);
|
||||
}
|
||||
|
||||
// ep = ep / 2;
|
||||
UnsignedBigInteger::divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
|
||||
ep.set_to(temp_quotient);
|
||||
|
||||
// base = (base * base) % m;
|
||||
UnsignedBigInteger::multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
|
||||
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
base.set_to(temp_remainder);
|
||||
}
|
||||
return exp;
|
||||
}
|
||||
UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b);
|
||||
UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m);
|
||||
|
||||
// Note: This function _will_ generate extremely huge numbers, and in doing so,
|
||||
// it will allocate and free a lot of memory!
|
||||
|
@ -185,206 +61,12 @@ static IntegerType Power(const IntegerType& b, const IntegerType& e)
|
|||
return exp;
|
||||
}
|
||||
|
||||
static void GCD_without_allocation(
|
||||
const UnsignedBigInteger& a,
|
||||
const UnsignedBigInteger& b,
|
||||
UnsignedBigInteger& temp_a,
|
||||
UnsignedBigInteger& temp_b,
|
||||
UnsignedBigInteger& temp_1,
|
||||
UnsignedBigInteger& temp_2,
|
||||
UnsignedBigInteger& temp_3,
|
||||
UnsignedBigInteger& temp_4,
|
||||
UnsignedBigInteger& temp_quotient,
|
||||
UnsignedBigInteger& temp_remainder,
|
||||
UnsignedBigInteger& output)
|
||||
{
|
||||
temp_a.set_to(a);
|
||||
temp_b.set_to(b);
|
||||
for (;;) {
|
||||
if (temp_a == 0) {
|
||||
output.set_to(temp_b);
|
||||
return;
|
||||
}
|
||||
UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b);
|
||||
UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b);
|
||||
|
||||
// temp_b %= temp_a
|
||||
UnsignedBigInteger::divide_without_allocation(temp_b, temp_a, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
temp_b.set_to(temp_remainder);
|
||||
if (temp_b == 0) {
|
||||
output.set_to(temp_a);
|
||||
return;
|
||||
}
|
||||
|
||||
// temp_a %= temp_b
|
||||
UnsignedBigInteger::divide_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
temp_a.set_to(temp_remainder);
|
||||
}
|
||||
}
|
||||
|
||||
inline UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
|
||||
{
|
||||
UnsignedBigInteger temp_a;
|
||||
UnsignedBigInteger temp_b;
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
UnsignedBigInteger output;
|
||||
|
||||
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
inline UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
|
||||
{
|
||||
UnsignedBigInteger temp_a;
|
||||
UnsignedBigInteger temp_b;
|
||||
UnsignedBigInteger temp_1;
|
||||
UnsignedBigInteger temp_2;
|
||||
UnsignedBigInteger temp_3;
|
||||
UnsignedBigInteger temp_4;
|
||||
UnsignedBigInteger temp_quotient;
|
||||
UnsignedBigInteger temp_remainder;
|
||||
UnsignedBigInteger gcd_output;
|
||||
UnsignedBigInteger output { 0 };
|
||||
|
||||
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
|
||||
if (gcd_output == 0) {
|
||||
#ifdef NT_DEBUG
|
||||
dbg() << "GCD is zero";
|
||||
#endif
|
||||
return output;
|
||||
}
|
||||
|
||||
// output = (a / gcd_output) * b
|
||||
UnsignedBigInteger::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
||||
UnsignedBigInteger::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, temp_4, output);
|
||||
|
||||
#ifdef NT_DEBUG
|
||||
dbg() << "quot: " << temp_quotient << " rem: " << temp_remainder << " out: " << output;
|
||||
#endif
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
template<size_t test_count>
|
||||
static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, test_count>& tests)
|
||||
{
|
||||
// Written using Wikipedia:
|
||||
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
|
||||
ASSERT(!(n < 4));
|
||||
auto predecessor = n.minus({ 1 });
|
||||
auto d = predecessor;
|
||||
size_t r = 0;
|
||||
|
||||
{
|
||||
auto div_result = d.divided_by(2);
|
||||
while (div_result.remainder == 0) {
|
||||
d = div_result.quotient;
|
||||
div_result = d.divided_by(2);
|
||||
++r;
|
||||
}
|
||||
}
|
||||
if (r == 0) {
|
||||
// n - 1 is odd, so n was even. But there is only one even prime:
|
||||
return n == 2;
|
||||
}
|
||||
|
||||
for (auto a : tests) {
|
||||
// Technically: ASSERT(2 <= a && a <= n - 2)
|
||||
ASSERT(a < n);
|
||||
auto x = ModularPower(a, d, n);
|
||||
if (x == 1 || x == predecessor)
|
||||
continue;
|
||||
bool skip_this_witness = false;
|
||||
// r − 1 iterations.
|
||||
for (size_t i = 0; i < r - 1; ++i) {
|
||||
x = ModularPower(x, 2, n);
|
||||
if (x == predecessor) {
|
||||
skip_this_witness = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (skip_this_witness)
|
||||
continue;
|
||||
return false; // "composite"
|
||||
}
|
||||
|
||||
return true; // "probably prime"
|
||||
}
|
||||
|
||||
static UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
|
||||
{
|
||||
ASSERT(min < max_excluded);
|
||||
auto range = max_excluded.minus(min);
|
||||
UnsignedBigInteger base;
|
||||
auto size = range.trimmed_length() * sizeof(u32) + 2;
|
||||
// "+2" is intentional (see below).
|
||||
u8 buf[size];
|
||||
AK::fill_with_random(buf, size);
|
||||
UnsignedBigInteger random { buf, size };
|
||||
// At this point, `random` is a large number, in the range [0, 256^size).
|
||||
// To get down to the actual range, we could just compute random % range.
|
||||
// This introduces "modulo bias". However, since we added 2 to `size`,
|
||||
// we know that the generated range is at least 65536 times as large as the
|
||||
// required range! This means that the modulo bias is only 0.0015%, if all
|
||||
// inputs are chosen adversarially. Let's hope this is good enough.
|
||||
auto divmod = random.divided_by(range);
|
||||
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
|
||||
return divmod.remainder.plus(min);
|
||||
}
|
||||
|
||||
static bool is_probably_prime(const UnsignedBigInteger& p)
|
||||
{
|
||||
// Is it a small number?
|
||||
if (p < 49) {
|
||||
u32 p_value = p.words()[0];
|
||||
// Is it a very small prime?
|
||||
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
|
||||
return true;
|
||||
// Is it the multiple of a very small prime?
|
||||
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
|
||||
return false;
|
||||
// Then it must be a prime, but not a very small prime, like 37.
|
||||
return true;
|
||||
}
|
||||
|
||||
Vector<UnsignedBigInteger, 256> tests;
|
||||
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
|
||||
tests.append(UnsignedBigInteger(2));
|
||||
tests.append(UnsignedBigInteger(3));
|
||||
tests.append(UnsignedBigInteger(5));
|
||||
tests.append(UnsignedBigInteger(7));
|
||||
tests.append(UnsignedBigInteger(11));
|
||||
tests.append(UnsignedBigInteger(13));
|
||||
UnsignedBigInteger seventeen { 17 };
|
||||
for (size_t i = tests.size(); i < 256; ++i) {
|
||||
tests.append(random_number(seventeen, p.minus(2)));
|
||||
}
|
||||
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
|
||||
// With 200 random numbers, this would mean an error of about 2^-400.
|
||||
// So we don't need to worry too much about the quality of the random numbers.
|
||||
|
||||
return MR_primality_test(p, tests);
|
||||
}
|
||||
|
||||
inline static UnsignedBigInteger random_big_prime(size_t bits)
|
||||
{
|
||||
ASSERT(bits >= 33);
|
||||
UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
|
||||
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
|
||||
for (;;) {
|
||||
auto p = random_number(min, max);
|
||||
if ((p.words()[0] & 1) == 0) {
|
||||
// An even number is definitely not a large prime.
|
||||
continue;
|
||||
}
|
||||
if (is_probably_prime(p))
|
||||
return p;
|
||||
}
|
||||
}
|
||||
UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded);
|
||||
bool is_probably_prime(const UnsignedBigInteger& p);
|
||||
UnsignedBigInteger random_big_prime(size_t bits);
|
||||
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue