|
@@ -0,0 +1,362 @@
|
|
|
|
+/*
|
|
|
|
+ * Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
|
|
|
|
+ * All rights reserved.
|
|
|
|
+ *
|
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
|
+ * modification, are permitted provided that the following conditions are met:
|
|
|
|
+ *
|
|
|
|
+ * 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
|
+ * list of conditions and the following disclaimer.
|
|
|
|
+ *
|
|
|
|
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
+ * this list of conditions and the following disclaimer in the documentation
|
|
|
|
+ * and/or other materials provided with the distribution.
|
|
|
|
+ *
|
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
|
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#include <LibCrypto/NumberTheory/ModularFunctions.h>
|
|
|
|
+
|
|
|
|
+namespace Crypto {
|
|
|
|
+namespace NumberTheory {
|
|
|
|
+
|
|
|
|
+UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
|
|
|
|
+{
|
|
|
|
+ if (b == 1)
|
|
|
|
+ return { 1 };
|
|
|
|
+
|
|
|
|
+ UnsignedBigInteger one { 1 };
|
|
|
|
+ UnsignedBigInteger temp_1;
|
|
|
|
+ UnsignedBigInteger temp_2;
|
|
|
|
+ UnsignedBigInteger temp_3;
|
|
|
|
+ UnsignedBigInteger temp_4;
|
|
|
|
+ UnsignedBigInteger temp_plus;
|
|
|
|
+ UnsignedBigInteger temp_minus;
|
|
|
|
+ UnsignedBigInteger temp_quotient;
|
|
|
|
+ UnsignedBigInteger temp_remainder;
|
|
|
|
+ UnsignedBigInteger d;
|
|
|
|
+
|
|
|
|
+ auto a = a_;
|
|
|
|
+ auto u = a;
|
|
|
|
+ if (a.words()[0] % 2 == 0) {
|
|
|
|
+ // u += b
|
|
|
|
+ UnsignedBigInteger::add_without_allocation(u, b, temp_plus);
|
|
|
|
+ u.set_to(temp_plus);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ auto v = b;
|
|
|
|
+ UnsignedBigInteger x { 0 };
|
|
|
|
+
|
|
|
|
+ // d = b - 1
|
|
|
|
+ UnsignedBigInteger::subtract_without_allocation(b, one, d);
|
|
|
|
+
|
|
|
|
+ while (!(v == 1)) {
|
|
|
|
+ while (v < u) {
|
|
|
|
+ // u -= v
|
|
|
|
+ UnsignedBigInteger::subtract_without_allocation(u, v, temp_minus);
|
|
|
|
+ u.set_to(temp_minus);
|
|
|
|
+
|
|
|
|
+ // d += x
|
|
|
|
+ UnsignedBigInteger::add_without_allocation(d, x, temp_plus);
|
|
|
|
+ d.set_to(temp_plus);
|
|
|
|
+
|
|
|
|
+ while (u.words()[0] % 2 == 0) {
|
|
|
|
+ if (d.words()[0] % 2 == 1) {
|
|
|
|
+ // d += b
|
|
|
|
+ UnsignedBigInteger::add_without_allocation(d, b, temp_plus);
|
|
|
|
+ d.set_to(temp_plus);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // u /= 2
|
|
|
|
+ UnsignedBigInteger::divide_u16_without_allocation(u, 2, temp_quotient, temp_remainder);
|
|
|
|
+ u.set_to(temp_quotient);
|
|
|
|
+
|
|
|
|
+ // d /= 2
|
|
|
|
+ UnsignedBigInteger::divide_u16_without_allocation(d, 2, temp_quotient, temp_remainder);
|
|
|
|
+ d.set_to(temp_quotient);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // v -= u
|
|
|
|
+ UnsignedBigInteger::subtract_without_allocation(v, u, temp_minus);
|
|
|
|
+ v.set_to(temp_minus);
|
|
|
|
+
|
|
|
|
+ // x += d
|
|
|
|
+ UnsignedBigInteger::add_without_allocation(x, d, temp_plus);
|
|
|
|
+ x.set_to(temp_plus);
|
|
|
|
+
|
|
|
|
+ while (v.words()[0] % 2 == 0) {
|
|
|
|
+ if (x.words()[0] % 2 == 1) {
|
|
|
|
+ // x += b
|
|
|
|
+ UnsignedBigInteger::add_without_allocation(x, b, temp_plus);
|
|
|
|
+ x.set_to(temp_plus);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // v /= 2
|
|
|
|
+ UnsignedBigInteger::divide_u16_without_allocation(v, 2, temp_quotient, temp_remainder);
|
|
|
|
+ v.set_to(temp_quotient);
|
|
|
|
+
|
|
|
|
+ // x /= 2
|
|
|
|
+ UnsignedBigInteger::divide_u16_without_allocation(x, 2, temp_quotient, temp_remainder);
|
|
|
|
+ x.set_to(temp_quotient);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // x % b
|
|
|
|
+ UnsignedBigInteger::divide_without_allocation(x, b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
|
|
|
+ return temp_remainder;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
|
|
|
|
+{
|
|
|
|
+ if (m == 1)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ UnsignedBigInteger ep { e };
|
|
|
|
+ UnsignedBigInteger base { b };
|
|
|
|
+ UnsignedBigInteger exp { 1 };
|
|
|
|
+
|
|
|
|
+ UnsignedBigInteger temp_1;
|
|
|
|
+ UnsignedBigInteger temp_2;
|
|
|
|
+ UnsignedBigInteger temp_3;
|
|
|
|
+ UnsignedBigInteger temp_4;
|
|
|
|
+ UnsignedBigInteger temp_multiply;
|
|
|
|
+ UnsignedBigInteger temp_quotient;
|
|
|
|
+ UnsignedBigInteger temp_remainder;
|
|
|
|
+
|
|
|
|
+ while (!(ep < 1)) {
|
|
|
|
+#ifdef NT_DEBUG
|
|
|
|
+ dbg() << ep.to_base10();
|
|
|
|
+#endif
|
|
|
|
+ if (ep.words()[0] % 2 == 1) {
|
|
|
|
+ // exp = (exp * base) % m;
|
|
|
|
+ UnsignedBigInteger::multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
|
|
|
|
+ UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
|
|
|
+ exp.set_to(temp_remainder);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // ep = ep / 2;
|
|
|
|
+ UnsignedBigInteger::divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
|
|
|
|
+ ep.set_to(temp_quotient);
|
|
|
|
+
|
|
|
|
+ // base = (base * base) % m;
|
|
|
|
+ UnsignedBigInteger::multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
|
|
|
|
+ UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
|
|
|
+ base.set_to(temp_remainder);
|
|
|
|
+ }
|
|
|
|
+ return exp;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void GCD_without_allocation(
|
|
|
|
+ const UnsignedBigInteger& a,
|
|
|
|
+ const UnsignedBigInteger& b,
|
|
|
|
+ UnsignedBigInteger& temp_a,
|
|
|
|
+ UnsignedBigInteger& temp_b,
|
|
|
|
+ UnsignedBigInteger& temp_1,
|
|
|
|
+ UnsignedBigInteger& temp_2,
|
|
|
|
+ UnsignedBigInteger& temp_3,
|
|
|
|
+ UnsignedBigInteger& temp_4,
|
|
|
|
+ UnsignedBigInteger& temp_quotient,
|
|
|
|
+ UnsignedBigInteger& temp_remainder,
|
|
|
|
+ UnsignedBigInteger& output)
|
|
|
|
+{
|
|
|
|
+ temp_a.set_to(a);
|
|
|
|
+ temp_b.set_to(b);
|
|
|
|
+ for (;;) {
|
|
|
|
+ if (temp_a == 0) {
|
|
|
|
+ output.set_to(temp_b);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // temp_b %= temp_a
|
|
|
|
+ UnsignedBigInteger::divide_without_allocation(temp_b, temp_a, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
|
|
|
+ temp_b.set_to(temp_remainder);
|
|
|
|
+ if (temp_b == 0) {
|
|
|
|
+ output.set_to(temp_a);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // temp_a %= temp_b
|
|
|
|
+ UnsignedBigInteger::divide_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
|
|
|
+ temp_a.set_to(temp_remainder);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
|
|
|
|
+{
|
|
|
|
+ UnsignedBigInteger temp_a;
|
|
|
|
+ UnsignedBigInteger temp_b;
|
|
|
|
+ UnsignedBigInteger temp_1;
|
|
|
|
+ UnsignedBigInteger temp_2;
|
|
|
|
+ UnsignedBigInteger temp_3;
|
|
|
|
+ UnsignedBigInteger temp_4;
|
|
|
|
+ UnsignedBigInteger temp_quotient;
|
|
|
|
+ UnsignedBigInteger temp_remainder;
|
|
|
|
+ UnsignedBigInteger output;
|
|
|
|
+
|
|
|
|
+ GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
|
|
|
|
+
|
|
|
|
+ return output;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
|
|
|
|
+{
|
|
|
|
+ UnsignedBigInteger temp_a;
|
|
|
|
+ UnsignedBigInteger temp_b;
|
|
|
|
+ UnsignedBigInteger temp_1;
|
|
|
|
+ UnsignedBigInteger temp_2;
|
|
|
|
+ UnsignedBigInteger temp_3;
|
|
|
|
+ UnsignedBigInteger temp_4;
|
|
|
|
+ UnsignedBigInteger temp_quotient;
|
|
|
|
+ UnsignedBigInteger temp_remainder;
|
|
|
|
+ UnsignedBigInteger gcd_output;
|
|
|
|
+ UnsignedBigInteger output { 0 };
|
|
|
|
+
|
|
|
|
+ GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
|
|
|
|
+ if (gcd_output == 0) {
|
|
|
|
+#ifdef NT_DEBUG
|
|
|
|
+ dbg() << "GCD is zero";
|
|
|
|
+#endif
|
|
|
|
+ return output;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // output = (a / gcd_output) * b
|
|
|
|
+ UnsignedBigInteger::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
|
|
|
|
+ UnsignedBigInteger::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, temp_4, output);
|
|
|
|
+
|
|
|
|
+#ifdef NT_DEBUG
|
|
|
|
+ dbg() << "quot: " << temp_quotient << " rem: " << temp_remainder << " out: " << output;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ return output;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
|
|
|
|
+{
|
|
|
|
+ // Written using Wikipedia:
|
|
|
|
+ // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
|
|
|
|
+ ASSERT(!(n < 4));
|
|
|
|
+ auto predecessor = n.minus({ 1 });
|
|
|
|
+ auto d = predecessor;
|
|
|
|
+ size_t r = 0;
|
|
|
|
+
|
|
|
|
+ {
|
|
|
|
+ auto div_result = d.divided_by(2);
|
|
|
|
+ while (div_result.remainder == 0) {
|
|
|
|
+ d = div_result.quotient;
|
|
|
|
+ div_result = d.divided_by(2);
|
|
|
|
+ ++r;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (r == 0) {
|
|
|
|
+ // n - 1 is odd, so n was even. But there is only one even prime:
|
|
|
|
+ return n == 2;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (auto a : tests) {
|
|
|
|
+ // Technically: ASSERT(2 <= a && a <= n - 2)
|
|
|
|
+ ASSERT(a < n);
|
|
|
|
+ auto x = ModularPower(a, d, n);
|
|
|
|
+ if (x == 1 || x == predecessor)
|
|
|
|
+ continue;
|
|
|
|
+ bool skip_this_witness = false;
|
|
|
|
+ // r − 1 iterations.
|
|
|
|
+ for (size_t i = 0; i < r - 1; ++i) {
|
|
|
|
+ x = ModularPower(x, 2, n);
|
|
|
|
+ if (x == predecessor) {
|
|
|
|
+ skip_this_witness = true;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (skip_this_witness)
|
|
|
|
+ continue;
|
|
|
|
+ return false; // "composite"
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return true; // "probably prime"
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
|
|
|
|
+{
|
|
|
|
+ ASSERT(min < max_excluded);
|
|
|
|
+ auto range = max_excluded.minus(min);
|
|
|
|
+ UnsignedBigInteger base;
|
|
|
|
+ auto size = range.trimmed_length() * sizeof(u32) + 2;
|
|
|
|
+ // "+2" is intentional (see below).
|
|
|
|
+ // Also, if we're about to crash anyway, at least produce a nice error:
|
|
|
|
+ ASSERT(size < 8 * MB);
|
|
|
|
+ u8 buf[size];
|
|
|
|
+ AK::fill_with_random(buf, size);
|
|
|
|
+ UnsignedBigInteger random { buf, size };
|
|
|
|
+ // At this point, `random` is a large number, in the range [0, 256^size).
|
|
|
|
+ // To get down to the actual range, we could just compute random % range.
|
|
|
|
+ // This introduces "modulo bias". However, since we added 2 to `size`,
|
|
|
|
+ // we know that the generated range is at least 65536 times as large as the
|
|
|
|
+ // required range! This means that the modulo bias is only 0.0015%, if all
|
|
|
|
+ // inputs are chosen adversarially. Let's hope this is good enough.
|
|
|
|
+ auto divmod = random.divided_by(range);
|
|
|
|
+ // The proper way to fix this is to restart if `divmod.quotient` is maximal.
|
|
|
|
+ return divmod.remainder.plus(min);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+bool is_probably_prime(const UnsignedBigInteger& p)
|
|
|
|
+{
|
|
|
|
+ // Is it a small number?
|
|
|
|
+ if (p < 49) {
|
|
|
|
+ u32 p_value = p.words()[0];
|
|
|
|
+ // Is it a very small prime?
|
|
|
|
+ if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
|
|
|
|
+ return true;
|
|
|
|
+ // Is it the multiple of a very small prime?
|
|
|
|
+ if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
|
|
|
|
+ return false;
|
|
|
|
+ // Then it must be a prime, but not a very small prime, like 37.
|
|
|
|
+ return true;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<UnsignedBigInteger, 256> tests;
|
|
|
|
+ // Make some good initial guesses that are guaranteed to find all primes < 2^64.
|
|
|
|
+ tests.append(UnsignedBigInteger(2));
|
|
|
|
+ tests.append(UnsignedBigInteger(3));
|
|
|
|
+ tests.append(UnsignedBigInteger(5));
|
|
|
|
+ tests.append(UnsignedBigInteger(7));
|
|
|
|
+ tests.append(UnsignedBigInteger(11));
|
|
|
|
+ tests.append(UnsignedBigInteger(13));
|
|
|
|
+ UnsignedBigInteger seventeen { 17 };
|
|
|
|
+ for (size_t i = tests.size(); i < 256; ++i) {
|
|
|
|
+ tests.append(random_number(seventeen, p.minus(2)));
|
|
|
|
+ }
|
|
|
|
+ // Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
|
|
|
|
+ // With 200 random numbers, this would mean an error of about 2^-400.
|
|
|
|
+ // So we don't need to worry too much about the quality of the random numbers.
|
|
|
|
+
|
|
|
|
+ return MR_primality_test(p, tests);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+UnsignedBigInteger random_big_prime(size_t bits)
|
|
|
|
+{
|
|
|
|
+ ASSERT(bits >= 33);
|
|
|
|
+ UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
|
|
|
|
+ UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
|
|
|
|
+ for (;;) {
|
|
|
|
+ auto p = random_number(min, max);
|
|
|
|
+ if ((p.words()[0] & 1) == 0) {
|
|
|
|
+ // An even number is definitely not a large prime.
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ if (is_probably_prime(p))
|
|
|
|
+ return p;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+}
|