Browse Source

LibCrypto: Add the montgomery modular power algorithm

This algorithm allows for much faster computations of modular powers
(around a 5x-10x speedup of the Crypto test). However, it is only valid
for odd modulo values, and therefore the old algorithm must be kept for
computations involving even modulo values.
DexesTTP 4 years ago
parent
commit
485adb5e29

+ 12 - 1
Userland/Libraries/LibCrypto/BigInt/Algorithms/BitwiseOperations.cpp

@@ -203,7 +203,7 @@ FLATTEN void UnsignedBigIntegerAlgorithms::shift_left_without_allocation(
     }
     }
 }
 }
 
 
-ALWAYS_INLINE void UnsignedBigIntegerAlgorithms::shift_left_by_n_words(
+void UnsignedBigIntegerAlgorithms::shift_left_by_n_words(
     UnsignedBigInteger const& number,
     UnsignedBigInteger const& number,
     size_t number_of_words,
     size_t number_of_words,
     UnsignedBigInteger& output)
     UnsignedBigInteger& output)
@@ -216,6 +216,17 @@ ALWAYS_INLINE void UnsignedBigIntegerAlgorithms::shift_left_by_n_words(
     __builtin_memcpy(&output.m_words.data()[number_of_words], number.m_words.data(), number.m_words.size() * sizeof(unsigned));
     __builtin_memcpy(&output.m_words.data()[number_of_words], number.m_words.data(), number.m_words.size() * sizeof(unsigned));
 }
 }
 
 
+void UnsignedBigIntegerAlgorithms::shift_right_by_n_words(
+    UnsignedBigInteger const& number,
+    size_t number_of_words,
+    UnsignedBigInteger& output)
+{
+    // shifting right by N words means just not copying the first words
+    output.set_to_0();
+    output.m_words.resize_and_keep_capacity(number.length() - number_of_words);
+    __builtin_memcpy(output.m_words.data(), &number.m_words.data()[number_of_words], (number.m_words.size() - number_of_words) * sizeof(unsigned));
+}
+
 /**
 /**
  * Returns the word at a requested index in the result of a shift operation
  * Returns the word at a requested index in the result of a shift operation
  */
  */

+ 232 - 0
Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp

@@ -49,4 +49,236 @@ void UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(
     }
     }
 }
 }
 
 
+/**
+ * Compute (1/value) % 2^32.
+ * This needs an odd input value
+ * Algorithm from: Dumas, J.G. "On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers".
+ */
+ALWAYS_INLINE static u32 inverse_wrapped(u32 value)
+{
+    VERIFY(value & 1);
+
+    i64 b = static_cast<i64>(value);
+    i64 k0 = (2 - b);
+    i64 t = (b - 1);
+    size_t i = 1;
+    while (i < 32) {
+        t = t * t;
+        k0 = k0 * (t + 1);
+        i <<= 1;
+    }
+    return static_cast<u32>(-k0);
+}
+
+/**
+ * Computes z = x * y + c. z_carry contains the top bits, z contains the bottom bits.
+ */
+ALWAYS_INLINE static void linear_multiplication_with_carry(u32 x, u32 y, u32 c, u32& z_carry, u32& z)
+{
+    u64 result = static_cast<u64>(x) * static_cast<u64>(y) + static_cast<u64>(c);
+    z_carry = static_cast<u32>(result >> 32);
+    z = static_cast<u32>(result);
+}
+
+/**
+ * Computes z = a + b. z_carry contains the top bit (1 or 0), z contains the bottom bits.
+ */
+ALWAYS_INLINE static void addition_with_carry(u32 a, u32 b, u32& z_carry, u32& z)
+{
+    u64 result = static_cast<u64>(a) + static_cast<u64>(b);
+    z_carry = static_cast<u32>(result >> 32);
+    z = static_cast<u32>(result);
+}
+
+/**
+ * Computes a montgomery "fragment" for y_i. This computes "z[i] += x[i] * y_i" for all words while rippling the carry, and returns the carry.
+ * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf)
+ */
+UnsignedBigInteger::Word UnsignedBigIntegerAlgorithms::montgomery_fragment(UnsignedBigInteger& z, size_t offset_in_z, UnsignedBigInteger const& x, UnsignedBigInteger::Word y_digit, size_t num_words)
+{
+    UnsignedBigInteger::Word carry { 0 };
+    for (size_t i = 0; i < num_words; ++i) {
+        UnsignedBigInteger::Word a_carry;
+        UnsignedBigInteger::Word a;
+        linear_multiplication_with_carry(x.m_words[i], y_digit, z.m_words[offset_in_z + i], a_carry, a);
+        UnsignedBigInteger::Word b_carry;
+        UnsignedBigInteger::Word b;
+        addition_with_carry(a, carry, b_carry, b);
+        z.m_words[offset_in_z + i] = b;
+        carry = a_carry + b_carry;
+    }
+    return carry;
+}
+
+/**
+ * Computes the "almost montgomery" product : x * y * 2 ^ (-num_words * BITS_IN_WORD) % modulo
+ * [Note : that means that the result z satisfies z * 2^(num_words * BITS_IN_WORD) % modulo = x * y % modulo]
+ * assuming :
+ *  - x, y and modulo are all already padded to num_words
+ *  - k = inverse_wrapped(modulo) (optimization to not recompute K each time)
+ * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf)
+ */
+void UnsignedBigIntegerAlgorithms::almost_montgomery_multiplication_without_allocation(
+    UnsignedBigInteger const& x,
+    UnsignedBigInteger const& y,
+    UnsignedBigInteger const& modulo,
+    UnsignedBigInteger& z,
+    UnsignedBigInteger::Word k,
+    size_t num_words,
+    UnsignedBigInteger& result)
+{
+    VERIFY(x.length() >= num_words);
+    VERIFY(y.length() >= num_words);
+    VERIFY(modulo.length() >= num_words);
+
+    z.set_to(0);
+    z.resize_with_leading_zeros(num_words * 2);
+
+    UnsignedBigInteger::Word previous_double_carry { 0 };
+    for (size_t i = 0; i < num_words; ++i) {
+        // z[i->num_words+i] += x * y_i
+        UnsignedBigInteger::Word carry_1 = montgomery_fragment(z, i, x, y.m_words[i], num_words);
+        // z[i->num_words+i] += modulo * (z_i * k)
+        UnsignedBigInteger::Word t = z.m_words[i] * k;
+        UnsignedBigInteger::Word carry_2 = montgomery_fragment(z, i, modulo, t, num_words);
+
+        // Compute the carry by combining all of the carrys of the previous computations
+        // Put it "right after" the range that we computed above
+        UnsignedBigInteger::Word temp_carry = previous_double_carry + carry_1;
+        UnsignedBigInteger::Word overall_carry = temp_carry + carry_2;
+        z.m_words[num_words + i] = overall_carry;
+
+        // Detect if there was a "double carry" for this word by checking if our carry results are smaller than their components
+        previous_double_carry = (temp_carry < carry_1 || overall_carry < carry_2) ? 1 : 0;
+    }
+
+    if (previous_double_carry == 0) {
+        // Return the top num_words bytes of Z, which contains our result.
+        shift_right_by_n_words(z, num_words, result);
+        result.resize_with_leading_zeros(num_words);
+        return;
+    }
+
+    // We have a carry, so we're "one bigger" than we need to be.
+    // Subtract the modulo from the result (the top half of z), and write it to the bottom half of Z since we have space.
+    // (With carry, of course.)
+    UnsignedBigInteger::Word c { 0 };
+    for (size_t i = 0; i < num_words; ++i) {
+        UnsignedBigInteger::Word z_digit = z.m_words[num_words + i];
+        UnsignedBigInteger::Word modulo_digit = modulo.m_words[i];
+        UnsignedBigInteger::Word new_z_digit = z_digit - modulo_digit - c;
+        z.m_words[i] = new_z_digit;
+        // Detect if the subtraction underflowed - from "Hacker's Delight"
+        c = ((modulo_digit & ~z_digit) | ((modulo_digit | ~z_digit) & new_z_digit)) >> (UnsignedBigInteger::BITS_IN_WORD - 1);
+    }
+
+    // Return the bottom num_words bytes of Z (with the carry bit handled)
+    z.m_words.resize(num_words);
+    result.set_to(z);
+    result.resize_with_leading_zeros(num_words);
+}
+
+/**
+ * Complexity: still O(N^3) with N the number of words in the largest word, but less complex than the classical mod power.
+ * Note: the montgomery multiplications requires an inverse modulo over 2^32, which is only defined for odd numbers.
+ */
+void UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(
+    UnsignedBigInteger const& base,
+    UnsignedBigInteger const& exponent,
+    UnsignedBigInteger const& modulo,
+    UnsignedBigInteger& temp_z,
+    UnsignedBigInteger& rr,
+    UnsignedBigInteger& one,
+    UnsignedBigInteger& z,
+    UnsignedBigInteger& zz,
+    UnsignedBigInteger& x,
+    UnsignedBigInteger& temp_extra,
+    UnsignedBigInteger& result)
+{
+    VERIFY(modulo.is_odd());
+
+    // Note: While this is a constexpr variable for clarity and could be changed in theory,
+    // various optimized parts of the algorithm rely on this value being exactly 4.
+    constexpr size_t window_size = 4;
+
+    size_t num_words = modulo.trimmed_length();
+    UnsignedBigInteger::Word k = inverse_wrapped(modulo.m_words[0]);
+
+    one.set_to(1);
+
+    // rr = ( 2 ^ (2 * modulo.length() * BITS_IN_WORD) ) % modulo
+    shift_left_by_n_words(one, 2 * num_words, x);
+    divide_without_allocation(x, modulo, temp_z, one, z, zz, temp_extra, rr);
+    rr.resize_with_leading_zeros(num_words);
+
+    // x = base [% modulo, if x doesn't already fit in modulo's words]
+    x.set_to(base);
+    if (x.trimmed_length() > num_words)
+        divide_without_allocation(base, modulo, temp_z, one, z, zz, temp_extra, x);
+    x.resize_with_leading_zeros(num_words);
+
+    one.set_to(1);
+    one.resize_with_leading_zeros(num_words);
+
+    // Compute the montgomery powers from 0 to 2^window_size. powers[i] = x^i
+    UnsignedBigInteger powers[1 << window_size];
+    almost_montgomery_multiplication_without_allocation(one, rr, modulo, temp_z, k, num_words, powers[0]);
+    almost_montgomery_multiplication_without_allocation(x, rr, modulo, temp_z, k, num_words, powers[1]);
+    for (size_t i = 2; i < (1 << window_size); ++i)
+        almost_montgomery_multiplication_without_allocation(powers[i - 1], powers[1], modulo, temp_z, k, num_words, powers[i]);
+
+    z.set_to(powers[0]);
+    z.resize_with_leading_zeros(num_words);
+    zz.set_to(0);
+    zz.resize_with_leading_zeros(num_words);
+
+    ssize_t exponent_length = exponent.trimmed_length();
+    for (ssize_t word_in_exponent = exponent_length - 1; word_in_exponent >= 0; --word_in_exponent) {
+        UnsignedBigInteger::Word exponent_word = exponent.m_words[word_in_exponent];
+        size_t bit_in_word = 0;
+        while (bit_in_word < UnsignedBigInteger::BITS_IN_WORD) {
+            if (word_in_exponent != exponent_length - 1 || bit_in_word != 0) {
+                almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz);
+                almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z);
+                almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz);
+                almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z);
+            }
+            auto power_index = exponent_word >> (UnsignedBigInteger::BITS_IN_WORD - window_size);
+            auto& power = powers[power_index];
+            almost_montgomery_multiplication_without_allocation(z, power, modulo, temp_z, k, num_words, zz);
+
+            swap(z, zz);
+
+            // Move to the next window
+            exponent_word <<= window_size;
+            bit_in_word += window_size;
+        }
+    }
+
+    almost_montgomery_multiplication_without_allocation(z, one, modulo, temp_z, k, num_words, zz);
+
+    if (zz < modulo) {
+        result.set_to(zz);
+        result.clamp_to_trimmed_length();
+        return;
+    }
+
+    // Note : Since we were using "almost montgomery" multiplications, we aren't guaranteed to be under the modulo already.
+    // So, if we're here, we need to respect the modulo.
+    // We can, however, start by trying to subtract the modulo, just in case we're close.
+    subtract_without_allocation(zz, modulo, result);
+
+    if (modulo < zz) {
+        // Note: This branch shouldn't happen in theory (as noted in https://github.com/rust-num/num-bigint/blob/master/src/biguint/monty.rs#L210)
+        // Let's dbgln the values we used. That way, if we hit this branch, we can contribute these values for test cases.
+        dbgln("Encountered the modulo branch during a montgomery modular power. Params : {} - {} - {}", base, exponent, modulo);
+        // We just clobber all the other temporaries that we don't need for the division.
+        // This is wasteful, but we're on the edgiest of cases already.
+        divide_without_allocation(zz, modulo, temp_z, rr, z, x, temp_extra, result);
+    }
+
+    result.clamp_to_trimmed_length();
+    return;
+}
+
 }
 }

+ 5 - 1
Userland/Libraries/LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h

@@ -27,9 +27,13 @@ public:
     static void destructive_GCD_without_allocation(UnsignedBigInteger& temp_a, UnsignedBigInteger& temp_b, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_remainder, UnsignedBigInteger& output);
     static void destructive_GCD_without_allocation(UnsignedBigInteger& temp_a, UnsignedBigInteger& temp_b, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_remainder, UnsignedBigInteger& output);
     static void modular_inverse_without_allocation(UnsignedBigInteger const& a_, UnsignedBigInteger const& b, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_minus, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_d, UnsignedBigInteger& temp_u, UnsignedBigInteger& temp_v, UnsignedBigInteger& temp_x, UnsignedBigInteger& result);
     static void modular_inverse_without_allocation(UnsignedBigInteger const& a_, UnsignedBigInteger const& b, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_minus, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_d, UnsignedBigInteger& temp_u, UnsignedBigInteger& temp_v, UnsignedBigInteger& temp_x, UnsignedBigInteger& result);
     static void destructive_modular_power_without_allocation(UnsignedBigInteger& ep, UnsignedBigInteger& base, UnsignedBigInteger const& m, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_multiply, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_remainder, UnsignedBigInteger& result);
     static void destructive_modular_power_without_allocation(UnsignedBigInteger& ep, UnsignedBigInteger& base, UnsignedBigInteger const& m, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_multiply, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_remainder, UnsignedBigInteger& result);
+    static void montgomery_modular_power_with_minimal_allocations(UnsignedBigInteger const& base, UnsignedBigInteger const& exponent, UnsignedBigInteger const& modulo, UnsignedBigInteger& temp_z0, UnsignedBigInteger& temp_rr, UnsignedBigInteger& temp_one, UnsignedBigInteger& temp_z, UnsignedBigInteger& temp_zz, UnsignedBigInteger& temp_x, UnsignedBigInteger& temp_extra, UnsignedBigInteger& result);
 
 
 private:
 private:
-    ALWAYS_INLINE static void shift_left_by_n_words(UnsignedBigInteger const& number, size_t number_of_words, UnsignedBigInteger& output);
+    static UnsignedBigInteger::Word montgomery_fragment(UnsignedBigInteger& z, size_t offset_in_z, UnsignedBigInteger const& x, UnsignedBigInteger::Word y_digit, size_t num_words);
+    static void almost_montgomery_multiplication_without_allocation(UnsignedBigInteger const& x, UnsignedBigInteger const& y, UnsignedBigInteger const& modulo, UnsignedBigInteger& z, UnsignedBigInteger::Word k, size_t num_words, UnsignedBigInteger& result);
+    static void shift_left_by_n_words(UnsignedBigInteger const& number, size_t number_of_words, UnsignedBigInteger& output);
+    static void shift_right_by_n_words(UnsignedBigInteger const& number, size_t number_of_words, UnsignedBigInteger& output);
     ALWAYS_INLINE static UnsignedBigInteger::Word shift_left_get_one_word(UnsignedBigInteger const& number, size_t num_bits, size_t result_word_index);
     ALWAYS_INLINE static UnsignedBigInteger::Word shift_left_get_one_word(UnsignedBigInteger const& number, size_t num_bits, size_t result_word_index);
 };
 };
 
 

+ 1 - 0
Userland/Libraries/LibCrypto/BigInt/UnsignedBigInteger.h

@@ -58,6 +58,7 @@ public:
         m_cached_trimmed_length = {};
         m_cached_trimmed_length = {};
     }
     }
 
 
+    bool is_odd() const { return m_words.size() && (m_words[0] & 1); }
     bool is_invalid() const { return m_is_invalid; }
     bool is_invalid() const { return m_is_invalid; }
 
 
     size_t length() const { return m_words.size(); }
     size_t length() const { return m_words.size(); }

+ 14 - 0
Userland/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp

@@ -37,6 +37,20 @@ UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigIn
     if (m == 1)
     if (m == 1)
         return 0;
         return 0;
 
 
+    if (m.is_odd()) {
+        UnsignedBigInteger temp_z0 { 0 };
+        UnsignedBigInteger temp_rr { 0 };
+        UnsignedBigInteger temp_one { 0 };
+        UnsignedBigInteger temp_z { 0 };
+        UnsignedBigInteger temp_zz { 0 };
+        UnsignedBigInteger temp_x { 0 };
+        UnsignedBigInteger temp_extra { 0 };
+
+        UnsignedBigInteger result;
+        UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
+        return result;
+    }
+
     UnsignedBigInteger ep { e };
     UnsignedBigInteger ep { e };
     UnsignedBigInteger base { b };
     UnsignedBigInteger base { b };