123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- /*
- * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
- * Copyright (c) 2020-2021, Dex♪ <dexes.ttp@gmail.com>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include "UnsignedBigIntegerAlgorithms.h"
- namespace Crypto {
- void UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(
- UnsignedBigInteger& ep,
- UnsignedBigInteger& base,
- UnsignedBigInteger const& m,
- UnsignedBigInteger& temp_1,
- UnsignedBigInteger& temp_2,
- UnsignedBigInteger& temp_3,
- UnsignedBigInteger& temp_4,
- UnsignedBigInteger& temp_multiply,
- UnsignedBigInteger& temp_quotient,
- UnsignedBigInteger& temp_remainder,
- UnsignedBigInteger& exp)
- {
- exp.set_to(1);
- while (!(ep < 1)) {
- if (ep.words()[0] % 2 == 1) {
- // exp = (exp * base) % m;
- multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_multiply);
- divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
- exp.set_to(temp_remainder);
- }
- // ep = ep / 2;
- divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
- ep.set_to(temp_quotient);
- // base = (base * base) % m;
- multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_multiply);
- divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
- base.set_to(temp_remainder);
- // Note that not clamping here would cause future calculations (multiply, specifically) to allocate even more unused space
- // which would then persist through the temp bigints, and significantly slow down later loops.
- // To avoid that, we can clamp to a specific max size, or just clamp to the min needed amount of space.
- ep.clamp_to_trimmed_length();
- exp.clamp_to_trimmed_length();
- base.clamp_to_trimmed_length();
- }
- }
- /**
- * Compute (1/value) % 2^32.
- * This needs an odd input value
- * Algorithm from: Dumas, J.G. "On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers".
- */
- ALWAYS_INLINE static u32 inverse_wrapped(u32 value)
- {
- VERIFY(value & 1);
- i64 b = static_cast<i64>(value);
- i64 k0 = (2 - b);
- i64 t = (b - 1);
- size_t i = 1;
- while (i < 32) {
- t = t * t;
- k0 = k0 * (t + 1);
- i <<= 1;
- }
- return static_cast<u32>(-k0);
- }
- /**
- * Computes z = x * y + c. z_carry contains the top bits, z contains the bottom bits.
- */
- ALWAYS_INLINE static void linear_multiplication_with_carry(u32 x, u32 y, u32 c, u32& z_carry, u32& z)
- {
- u64 result = static_cast<u64>(x) * static_cast<u64>(y) + static_cast<u64>(c);
- z_carry = static_cast<u32>(result >> 32);
- z = static_cast<u32>(result);
- }
- /**
- * Computes z = a + b. z_carry contains the top bit (1 or 0), z contains the bottom bits.
- */
- ALWAYS_INLINE static void addition_with_carry(u32 a, u32 b, u32& z_carry, u32& z)
- {
- u64 result = static_cast<u64>(a) + static_cast<u64>(b);
- z_carry = static_cast<u32>(result >> 32);
- z = static_cast<u32>(result);
- }
- /**
- * Computes a montgomery "fragment" for y_i. This computes "z[i] += x[i] * y_i" for all words while rippling the carry, and returns the carry.
- * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf)
- */
- UnsignedBigInteger::Word UnsignedBigIntegerAlgorithms::montgomery_fragment(UnsignedBigInteger& z, size_t offset_in_z, UnsignedBigInteger const& x, UnsignedBigInteger::Word y_digit, size_t num_words)
- {
- UnsignedBigInteger::Word carry { 0 };
- for (size_t i = 0; i < num_words; ++i) {
- UnsignedBigInteger::Word a_carry;
- UnsignedBigInteger::Word a;
- linear_multiplication_with_carry(x.m_words[i], y_digit, z.m_words[offset_in_z + i], a_carry, a);
- UnsignedBigInteger::Word b_carry;
- UnsignedBigInteger::Word b;
- addition_with_carry(a, carry, b_carry, b);
- z.m_words[offset_in_z + i] = b;
- carry = a_carry + b_carry;
- }
- return carry;
- }
- /**
- * Computes the "almost montgomery" product : x * y * 2 ^ (-num_words * BITS_IN_WORD) % modulo
- * [Note : that means that the result z satisfies z * 2^(num_words * BITS_IN_WORD) % modulo = x * y % modulo]
- * assuming :
- * - x, y and modulo are all already padded to num_words
- * - k = inverse_wrapped(modulo) (optimization to not recompute K each time)
- * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf)
- */
- void UnsignedBigIntegerAlgorithms::almost_montgomery_multiplication_without_allocation(
- UnsignedBigInteger const& x,
- UnsignedBigInteger const& y,
- UnsignedBigInteger const& modulo,
- UnsignedBigInteger& z,
- UnsignedBigInteger::Word k,
- size_t num_words,
- UnsignedBigInteger& result)
- {
- VERIFY(x.length() >= num_words);
- VERIFY(y.length() >= num_words);
- VERIFY(modulo.length() >= num_words);
- z.set_to(0);
- z.resize_with_leading_zeros(num_words * 2);
- UnsignedBigInteger::Word previous_double_carry { 0 };
- for (size_t i = 0; i < num_words; ++i) {
- // z[i->num_words+i] += x * y_i
- UnsignedBigInteger::Word carry_1 = montgomery_fragment(z, i, x, y.m_words[i], num_words);
- // z[i->num_words+i] += modulo * (z_i * k)
- UnsignedBigInteger::Word t = z.m_words[i] * k;
- UnsignedBigInteger::Word carry_2 = montgomery_fragment(z, i, modulo, t, num_words);
- // Compute the carry by combining all of the carrys of the previous computations
- // Put it "right after" the range that we computed above
- UnsignedBigInteger::Word temp_carry = previous_double_carry + carry_1;
- UnsignedBigInteger::Word overall_carry = temp_carry + carry_2;
- z.m_words[num_words + i] = overall_carry;
- // Detect if there was a "double carry" for this word by checking if our carry results are smaller than their components
- previous_double_carry = (temp_carry < carry_1 || overall_carry < carry_2) ? 1 : 0;
- }
- if (previous_double_carry == 0) {
- // Return the top num_words bytes of Z, which contains our result.
- shift_right_by_n_words(z, num_words, result);
- result.resize_with_leading_zeros(num_words);
- return;
- }
- // We have a carry, so we're "one bigger" than we need to be.
- // Subtract the modulo from the result (the top half of z), and write it to the bottom half of Z since we have space.
- // (With carry, of course.)
- UnsignedBigInteger::Word c { 0 };
- for (size_t i = 0; i < num_words; ++i) {
- UnsignedBigInteger::Word z_digit = z.m_words[num_words + i];
- UnsignedBigInteger::Word modulo_digit = modulo.m_words[i];
- UnsignedBigInteger::Word new_z_digit = z_digit - modulo_digit - c;
- z.m_words[i] = new_z_digit;
- // Detect if the subtraction underflowed - from "Hacker's Delight"
- c = ((modulo_digit & ~z_digit) | ((modulo_digit | ~z_digit) & new_z_digit)) >> (UnsignedBigInteger::BITS_IN_WORD - 1);
- }
- // Return the bottom num_words bytes of Z (with the carry bit handled)
- z.m_words.resize(num_words);
- result.set_to(z);
- result.resize_with_leading_zeros(num_words);
- }
- /**
- * Complexity: still O(N^3) with N the number of words in the largest word, but less complex than the classical mod power.
- * Note: the montgomery multiplications requires an inverse modulo over 2^32, which is only defined for odd numbers.
- */
- void UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(
- UnsignedBigInteger const& base,
- UnsignedBigInteger const& exponent,
- UnsignedBigInteger const& modulo,
- UnsignedBigInteger& temp_z,
- UnsignedBigInteger& rr,
- UnsignedBigInteger& one,
- UnsignedBigInteger& z,
- UnsignedBigInteger& zz,
- UnsignedBigInteger& x,
- UnsignedBigInteger& temp_extra,
- UnsignedBigInteger& result)
- {
- VERIFY(modulo.is_odd());
- // Note: While this is a constexpr variable for clarity and could be changed in theory,
- // various optimized parts of the algorithm rely on this value being exactly 4.
- constexpr size_t window_size = 4;
- size_t num_words = modulo.trimmed_length();
- UnsignedBigInteger::Word k = inverse_wrapped(modulo.m_words[0]);
- one.set_to(1);
- // rr = ( 2 ^ (2 * modulo.length() * BITS_IN_WORD) ) % modulo
- shift_left_by_n_words(one, 2 * num_words, x);
- divide_without_allocation(x, modulo, temp_z, one, z, zz, temp_extra, rr);
- rr.resize_with_leading_zeros(num_words);
- // x = base [% modulo, if x doesn't already fit in modulo's words]
- x.set_to(base);
- if (x.trimmed_length() > num_words)
- divide_without_allocation(base, modulo, temp_z, one, z, zz, temp_extra, x);
- x.resize_with_leading_zeros(num_words);
- one.set_to(1);
- one.resize_with_leading_zeros(num_words);
- // Compute the montgomery powers from 0 to 2^window_size. powers[i] = x^i
- UnsignedBigInteger powers[1 << window_size];
- almost_montgomery_multiplication_without_allocation(one, rr, modulo, temp_z, k, num_words, powers[0]);
- almost_montgomery_multiplication_without_allocation(x, rr, modulo, temp_z, k, num_words, powers[1]);
- for (size_t i = 2; i < (1 << window_size); ++i)
- almost_montgomery_multiplication_without_allocation(powers[i - 1], powers[1], modulo, temp_z, k, num_words, powers[i]);
- z.set_to(powers[0]);
- z.resize_with_leading_zeros(num_words);
- zz.set_to(0);
- zz.resize_with_leading_zeros(num_words);
- ssize_t exponent_length = exponent.trimmed_length();
- for (ssize_t word_in_exponent = exponent_length - 1; word_in_exponent >= 0; --word_in_exponent) {
- UnsignedBigInteger::Word exponent_word = exponent.m_words[word_in_exponent];
- size_t bit_in_word = 0;
- while (bit_in_word < UnsignedBigInteger::BITS_IN_WORD) {
- if (word_in_exponent != exponent_length - 1 || bit_in_word != 0) {
- almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz);
- almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z);
- almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz);
- almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z);
- }
- auto power_index = exponent_word >> (UnsignedBigInteger::BITS_IN_WORD - window_size);
- auto& power = powers[power_index];
- almost_montgomery_multiplication_without_allocation(z, power, modulo, temp_z, k, num_words, zz);
- swap(z, zz);
- // Move to the next window
- exponent_word <<= window_size;
- bit_in_word += window_size;
- }
- }
- almost_montgomery_multiplication_without_allocation(z, one, modulo, temp_z, k, num_words, zz);
- if (zz < modulo) {
- result.set_to(zz);
- result.clamp_to_trimmed_length();
- return;
- }
- // Note : Since we were using "almost montgomery" multiplications, we aren't guaranteed to be under the modulo already.
- // So, if we're here, we need to respect the modulo.
- // We can, however, start by trying to subtract the modulo, just in case we're close.
- subtract_without_allocation(zz, modulo, result);
- if (modulo < zz) {
- // Note: This branch shouldn't happen in theory (as noted in https://github.com/rust-num/num-bigint/blob/master/src/biguint/monty.rs#L210)
- // Let's dbgln the values we used. That way, if we hit this branch, we can contribute these values for test cases.
- dbgln("Encountered the modulo branch during a montgomery modular power. Params : {} - {} - {}", base, exponent, modulo);
- // We just clobber all the other temporaries that we don't need for the division.
- // This is wasteful, but we're on the edgiest of cases already.
- divide_without_allocation(zz, modulo, temp_z, rr, z, x, temp_extra, result);
- }
- result.clamp_to_trimmed_length();
- return;
- }
- }
|