ladybird/Libraries/LibJS/AST.cpp

1577 lines
47 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/StringObject.h>
#include <stdio.h>
namespace JS {
static void update_function_name(Value& value, const FlyString& name)
{
if (!value.is_object())
return;
auto& object = value.as_object();
if (object.is_function()) {
auto& function = static_cast<ScriptFunction&>(object);
if (function.name().is_empty())
function.set_name(name);
} else if (object.is_array()) {
auto& array = static_cast<Array&>(object);
for (size_t i = 0; i < array.elements().size(); ++i) {
update_function_name(array.elements()[i], name);
}
}
}
Value ScopeNode::execute(Interpreter& interpreter) const
{
return interpreter.run(*this);
}
Value FunctionDeclaration::execute(Interpreter& interpreter) const
{
auto* function = ScriptFunction::create(interpreter.global_object(), name(), body(), parameters(), function_length(), interpreter.current_environment());
interpreter.set_variable(name(), function);
return js_undefined();
}
Value FunctionExpression::execute(Interpreter& interpreter) const
{
return ScriptFunction::create(interpreter.global_object(), name(), body(), parameters(), function_length(), interpreter.current_environment());
}
Value ExpressionStatement::execute(Interpreter& interpreter) const
{
return m_expression->execute(interpreter);
}
CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter) const
{
if (is_new_expression()) {
// Computing |this| is irrelevant for "new" expression.
return { js_undefined(), m_callee->execute(interpreter) };
}
if (m_callee->is_member_expression()) {
auto& member_expression = static_cast<const MemberExpression&>(*m_callee);
auto object_value = member_expression.object().execute(interpreter);
if (interpreter.exception())
return {};
auto* this_value = object_value.to_object(interpreter);
if (interpreter.exception())
return {};
auto callee = this_value->get(member_expression.computed_property_name(interpreter)).value_or(js_undefined());
return { this_value, callee };
}
return { &interpreter.global_object(), m_callee->execute(interpreter) };
}
Value CallExpression::execute(Interpreter& interpreter) const
{
auto [this_value, callee] = compute_this_and_callee(interpreter);
if (interpreter.exception())
return {};
ASSERT(!callee.is_empty());
2020-05-06 11:52:53 +01:00
if (!callee.is_function()
|| (is_new_expression() && (callee.as_object().is_native_function() && !static_cast<NativeFunction&>(callee.as_object()).has_constructor()))) {
String error_message;
auto call_type = is_new_expression() ? "constructor" : "function";
if (m_callee->is_identifier() || m_callee->is_member_expression()) {
String expression_string;
if (m_callee->is_identifier())
expression_string = static_cast<const Identifier&>(*m_callee).string();
else
expression_string = static_cast<const MemberExpression&>(*m_callee).to_string_approximation();
error_message = String::format("%s is not a %s (evaluated from '%s')", callee.to_string_without_side_effects().characters(), call_type, expression_string.characters());
} else {
error_message = String::format("%s is not a %s", callee.to_string_without_side_effects().characters(), call_type);
}
return interpreter.throw_exception<TypeError>(error_message);
}
2020-05-06 11:52:53 +01:00
auto& function = callee.as_function();
MarkedValueList arguments(interpreter.heap());
arguments.values().append(function.bound_arguments());
for (size_t i = 0; i < m_arguments.size(); ++i) {
auto value = m_arguments[i].value->execute(interpreter);
if (interpreter.exception())
return {};
if (m_arguments[i].is_spread) {
// FIXME: Support generic iterables
Vector<Value> iterables;
if (value.is_string()) {
for (auto ch : value.as_string().string())
iterables.append(Value(js_string(interpreter, String::format("%c", ch))));
} else if (value.is_object() && value.as_object().is_array()) {
iterables = static_cast<const Array&>(value.as_object()).elements();
} else if (value.is_object() && value.as_object().is_string_object()) {
for (auto ch : static_cast<const StringObject&>(value.as_object()).primitive_string().string())
iterables.append(Value(js_string(interpreter, String::format("%c", ch))));
} else {
interpreter.throw_exception<TypeError>(String::format("%s is not iterable", value.to_string_without_side_effects().characters()));
}
for (auto& value : iterables)
arguments.append(value);
} else {
arguments.append(value);
}
}
auto& call_frame = interpreter.push_call_frame();
call_frame.function_name = function.name();
call_frame.arguments = arguments.values();
call_frame.environment = function.create_environment();
Object* new_object = nullptr;
Value result;
if (is_new_expression()) {
new_object = Object::create_empty(interpreter, interpreter.global_object());
auto prototype = function.get("prototype");
if (prototype.is_object())
new_object->set_prototype(&prototype.as_object());
call_frame.this_value = new_object;
result = function.construct(interpreter);
} else {
call_frame.this_value = function.bound_this().value_or(this_value);
result = function.call(interpreter);
}
interpreter.pop_call_frame();
if (interpreter.exception())
return {};
if (is_new_expression()) {
if (result.is_object())
return result;
return new_object;
}
return result;
}
Value ReturnStatement::execute(Interpreter& interpreter) const
{
auto value = argument() ? argument()->execute(interpreter) : js_undefined();
if (interpreter.exception())
return {};
interpreter.unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter) const
{
auto predicate_result = m_predicate->execute(interpreter);
if (interpreter.exception())
return {};
if (predicate_result.to_boolean())
return interpreter.run(*m_consequent);
if (m_alternate)
return interpreter.run(*m_alternate);
return js_undefined();
}
2020-03-09 03:22:21 +08:00
Value WhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
while (m_test->execute(interpreter).to_boolean()) {
if (interpreter.exception())
return {};
2020-03-09 03:22:21 +08:00
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
2020-03-09 03:22:21 +08:00
}
return last_value;
}
Value DoWhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
do {
if (interpreter.exception())
return {};
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
} while (m_test->execute(interpreter).to_boolean());
return last_value;
}
2020-03-12 23:12:12 +11:00
Value ForStatement::execute(Interpreter& interpreter) const
{
RefPtr<BlockStatement> wrapper;
if (m_init && m_init->is_variable_declaration() && static_cast<const VariableDeclaration*>(m_init.ptr())->declaration_kind() != DeclarationKind::Var) {
wrapper = create_ast_node<BlockStatement>();
NonnullRefPtrVector<VariableDeclaration> decls;
decls.append(*static_cast<const VariableDeclaration*>(m_init.ptr()));
wrapper->add_variables(decls);
interpreter.enter_scope(*wrapper, {}, ScopeType::Block);
}
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
2020-03-12 23:12:12 +11:00
Value last_value = js_undefined();
if (m_init) {
2020-03-12 23:12:12 +11:00
m_init->execute(interpreter);
if (interpreter.exception())
return {};
}
2020-03-12 23:12:12 +11:00
if (m_test) {
while (true) {
auto test_result = m_test->execute(interpreter);
if (interpreter.exception())
return {};
if (!test_result.to_boolean())
break;
2020-03-12 23:12:12 +11:00
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
2020-03-12 23:12:12 +11:00
m_update->execute(interpreter);
if (interpreter.exception())
return {};
}
2020-03-12 23:12:12 +11:00
}
} else {
while (true) {
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
2020-03-12 23:12:12 +11:00
m_update->execute(interpreter);
if (interpreter.exception())
return {};
}
2020-03-12 23:12:12 +11:00
}
}
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case BinaryOp::Addition:
return add(interpreter, lhs_result, rhs_result);
case BinaryOp::Subtraction:
return sub(interpreter, lhs_result, rhs_result);
case BinaryOp::Multiplication:
return mul(interpreter, lhs_result, rhs_result);
case BinaryOp::Division:
return div(interpreter, lhs_result, rhs_result);
case BinaryOp::Modulo:
return mod(interpreter, lhs_result, rhs_result);
case BinaryOp::Exponentiation:
return exp(interpreter, lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return Value(strict_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::TypedInequals:
return Value(!strict_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::AbstractEquals:
return Value(abstract_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::AbstractInequals:
return Value(!abstract_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::GreaterThan:
return greater_than(interpreter, lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(interpreter, lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(interpreter, lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(interpreter, lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::UnsignedRightShift:
return unsigned_right_shift(interpreter, lhs_result, rhs_result);
2020-04-23 16:06:01 +01:00
case BinaryOp::In:
return in(interpreter, lhs_result, rhs_result);
case BinaryOp::InstanceOf:
return instance_of(interpreter, lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case LogicalOp::And:
if (lhs_result.to_boolean()) {
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
case LogicalOp::Or: {
if (lhs_result.to_boolean())
return lhs_result;
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return rhs_result;
}
case LogicalOp::NullishCoalescing:
if (lhs_result.is_null() || lhs_result.is_undefined()) {
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
}
ASSERT_NOT_REACHED();
}
Reference Expression::to_reference(Interpreter&) const
{
return {};
}
Reference Identifier::to_reference(Interpreter& interpreter) const
{
return interpreter.get_reference(string());
}
Reference MemberExpression::to_reference(Interpreter& interpreter) const
{
auto object_value = m_object->execute(interpreter);
if (object_value.is_empty())
return {};
auto* object = object_value.to_object(interpreter);
if (!object)
return {};
auto property_name = computed_property_name(interpreter);
if (!property_name.is_valid())
return {};
return { object, property_name };
}
Value UnaryExpression::execute(Interpreter& interpreter) const
{
if (m_op == UnaryOp::Delete) {
auto reference = m_lhs->to_reference(interpreter);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return Value(true);
// FIXME: Support deleting locals
ASSERT(!reference.is_local_variable());
if (reference.is_global_variable())
return interpreter.global_object().delete_property(reference.name());
auto* base_object = reference.base().to_object(interpreter);
if (!base_object)
return {};
return base_object->delete_property(reference.name());
}
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case UnaryOp::BitwiseNot:
return bitwise_not(interpreter, lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
2020-04-02 17:58:39 +01:00
case UnaryOp::Plus:
return unary_plus(interpreter, lhs_result);
2020-04-02 17:58:39 +01:00
case UnaryOp::Minus:
return unary_minus(interpreter, lhs_result);
2020-03-18 06:33:32 +11:00
case UnaryOp::Typeof:
switch (lhs_result.type()) {
case Value::Type::Empty:
ASSERT_NOT_REACHED();
return {};
2020-03-18 06:33:32 +11:00
case Value::Type::Undefined:
return js_string(interpreter, "undefined");
2020-03-18 06:33:32 +11:00
case Value::Type::Null:
// yes, this is on purpose. yes, this is how javascript works.
// yes, it's silly.
return js_string(interpreter, "object");
2020-03-18 06:33:32 +11:00
case Value::Type::Number:
return js_string(interpreter, "number");
2020-03-18 06:33:32 +11:00
case Value::Type::String:
return js_string(interpreter, "string");
2020-03-18 06:33:32 +11:00
case Value::Type::Object:
2020-05-06 11:52:53 +01:00
if (lhs_result.is_function())
return js_string(interpreter, "function");
return js_string(interpreter, "object");
2020-03-18 06:33:32 +11:00
case Value::Type::Boolean:
return js_string(interpreter, "boolean");
case Value::Type::Symbol:
return js_string(interpreter, "symbol");
2020-04-15 17:55:03 +01:00
default:
ASSERT_NOT_REACHED();
2020-03-18 06:33:32 +11:00
}
2020-04-15 17:55:03 +01:00
case UnaryOp::Void:
return js_undefined();
case UnaryOp::Delete:
ASSERT_NOT_REACHED();
}
ASSERT_NOT_REACHED();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
if (!m_children.is_empty()) {
print_indent(indent + 1);
printf("(Children)\n");
for (auto& child : children())
child.dump(indent + 2);
}
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::AbstractEquals:
op_string = "==";
break;
case BinaryOp::AbstractInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::UnsignedRightShift:
op_string = ">>>";
break;
2020-04-23 16:06:01 +01:00
case BinaryOp::In:
op_string = "in";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
case LogicalOp::NullishCoalescing:
op_string = "??";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
2020-04-02 17:58:39 +01:00
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
2020-03-18 06:33:32 +11:00
case UnaryOp::Typeof:
op_string = "typeof ";
break;
2020-04-15 17:55:03 +01:00
case UnaryOp::Void:
op_string = "void ";
break;
case UnaryOp::Delete:
op_string = "delete ";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
printf("CallExpression %s\n", is_new_expression() ? "[new]" : "");
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumericLiteral %g\n", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
printf("null\n");
}
void FunctionNode::dump(int indent, const char* class_name) const
{
print_indent(indent);
printf("%s '%s'\n", class_name, name().characters());
if (!m_parameters.is_empty()) {
print_indent(indent + 1);
printf("(Parameters)\n");
for (auto& parameter : m_parameters) {
print_indent(indent + 2);
2020-05-04 16:05:13 +01:00
if (parameter.is_rest)
printf("...");
printf("%s\n", parameter.name.characters());
2020-05-04 16:05:13 +01:00
if (parameter.default_value)
parameter.default_value->dump(indent + 3);
}
}
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
print_indent(indent + 1);
printf("(Body)\n");
body().dump(indent + 2);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
printf("Else\n");
alternate()->dump(indent + 1);
}
}
2020-03-09 03:22:21 +08:00
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
test().dump(indent + 1);
2020-03-09 03:22:21 +08:00
body().dump(indent + 1);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("DoWhile\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
2020-03-12 23:12:12 +11:00
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter) const
{
auto value = interpreter.get_variable(string());
if (value.is_empty())
return interpreter.throw_exception<ReferenceError>(String::format("'%s' not known", string().characters()));
return value;
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
void SpreadExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_target->dump(indent + 1);
}
Value SpreadExpression::execute(Interpreter& interpreter) const
{
return m_target->execute(interpreter);
}
2020-04-13 00:42:14 +02:00
Value ThisExpression::execute(Interpreter& interpreter) const
{
return interpreter.this_value();
}
void ThisExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
Value AssignmentExpression::execute(Interpreter& interpreter) const
{
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
Value lhs_result;
switch (m_op) {
2020-03-12 13:54:56 +01:00
case AssignmentOp::Assignment:
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::AdditionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = add(interpreter, lhs_result, rhs_result);
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::SubtractionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = sub(interpreter, lhs_result, rhs_result);
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::MultiplicationAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = mul(interpreter, lhs_result, rhs_result);
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::DivisionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = div(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::ModuloAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = mod(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::ExponentiationAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = exp(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseAndAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = bitwise_and(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseOrAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = bitwise_or(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseXorAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = bitwise_xor(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::LeftShiftAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = left_shift(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::RightShiftAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = right_shift(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::UnsignedRightShiftAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = unsigned_right_shift(interpreter, lhs_result, rhs_result);
break;
}
if (interpreter.exception())
return {};
auto reference = m_lhs->to_reference(interpreter);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return interpreter.throw_exception<ReferenceError>("Invalid left-hand side in assignment");
update_function_name(rhs_result, reference.name().as_string());
reference.put(interpreter, rhs_result);
if (interpreter.exception())
return {};
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter) const
{
auto reference = m_argument->to_reference(interpreter);
if (interpreter.exception())
return {};
auto old_value = reference.get(interpreter);
if (interpreter.exception())
return {};
old_value = old_value.to_number();
int op_result = 0;
switch (m_op) {
case UpdateOp::Increment:
op_result = 1;
break;
case UpdateOp::Decrement:
op_result = -1;
break;
default:
ASSERT_NOT_REACHED();
}
auto new_value = Value(old_value.as_double() + op_result);
reference.put(interpreter, new_value);
if (interpreter.exception())
return {};
return m_prefixed ? new_value : old_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
2020-03-12 13:54:56 +01:00
case AssignmentOp::Assignment:
op_string = "=";
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
2020-03-12 13:54:56 +01:00
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
case AssignmentOp::ModuloAssignment:
op_string = "%=";
break;
case AssignmentOp::ExponentiationAssignment:
op_string = "**=";
break;
case AssignmentOp::BitwiseAndAssignment:
op_string = "&=";
break;
case AssignmentOp::BitwiseOrAssignment:
op_string = "|=";
break;
case AssignmentOp::BitwiseXorAssignment:
op_string = "^=";
break;
case AssignmentOp::LeftShiftAssignment:
op_string = "<<=";
break;
case AssignmentOp::RightShiftAssignment:
op_string = ">>=";
break;
case AssignmentOp::UnsignedRightShiftAssignment:
op_string = ">>>=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_prefixed)
printf("%s\n", op_string);
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
printf("%s\n", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter) const
{
for (auto& declarator : m_declarations) {
if (auto* init = declarator.init()) {
auto initalizer_result = init->execute(interpreter);
if (interpreter.exception())
return {};
auto variable_name = declarator.id().string();
update_function_name(initalizer_result, variable_name);
interpreter.set_variable(variable_name, initalizer_result, true);
}
}
return js_undefined();
}
Value VariableDeclarator::execute(Interpreter&) const
{
// NOTE: This node is handled by VariableDeclaration.
ASSERT_NOT_REACHED();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_kind_string = nullptr;
switch (m_declaration_kind) {
case DeclarationKind::Let:
declaration_kind_string = "Let";
break;
case DeclarationKind::Var:
declaration_kind_string = "Var";
break;
case DeclarationKind::Const:
declaration_kind_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_kind_string);
for (auto& declarator : m_declarations)
declarator.dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_id->dump(indent + 1);
if (m_init)
m_init->dump(indent + 1);
}
void ObjectProperty::dump(int indent) const
{
ASTNode::dump(indent);
m_key->dump(indent + 1);
m_value->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& property : m_properties) {
property.dump(indent + 1);
2020-03-21 02:29:00 +02:00
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectProperty::execute(Interpreter&) const
{
// NOTE: ObjectProperty execution is handled by ObjectExpression.
ASSERT_NOT_REACHED();
}
Value ObjectExpression::execute(Interpreter& interpreter) const
{
auto* object = Object::create_empty(interpreter, interpreter.global_object());
for (auto& property : m_properties) {
auto key_result = property.key().execute(interpreter);
if (interpreter.exception())
return {};
if (property.is_spread()) {
if (key_result.is_array()) {
auto& array_to_spread = static_cast<Array&>(key_result.as_object());
auto& elements = array_to_spread.elements();
for (size_t i = 0; i < elements.size(); ++i) {
auto element = elements.at(i);
if (!element.is_empty())
object->put_by_index(i, element);
}
} else if (key_result.is_object()) {
auto& obj_to_spread = key_result.as_object();
for (auto& it : obj_to_spread.shape().property_table_ordered()) {
if (it.value.attributes & Attribute::Enumerable)
object->put(it.key, obj_to_spread.get(it.key));
}
} else if (key_result.is_string()) {
auto& str_to_spread = key_result.as_string().string();
for (size_t i = 0; i < str_to_spread.length(); i++) {
object->put_by_index(i, js_string(interpreter, str_to_spread.substring(i, 1)));
}
}
continue;
}
auto key = key_result.to_string(interpreter);
if (interpreter.exception())
return {};
auto value = property.value().execute(interpreter);
if (interpreter.exception())
return {};
update_function_name(value, key);
object->put(key, value);
}
2020-03-21 02:29:00 +02:00
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false");
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
PropertyName MemberExpression::computed_property_name(Interpreter& interpreter) const
{
if (!is_computed()) {
ASSERT(m_property->is_identifier());
return PropertyName(static_cast<const Identifier&>(*m_property).string());
}
auto index = m_property->execute(interpreter);
if (interpreter.exception())
return {};
ASSERT(!index.is_empty());
if (index.is_integer() && index.to_i32() >= 0)
return PropertyName(index.to_i32());
auto index_string = index.to_string(interpreter);
if (interpreter.exception())
return {};
return PropertyName(index_string);
}
String MemberExpression::to_string_approximation() const
{
String object_string = "<object>";
if (m_object->is_identifier())
object_string = static_cast<const Identifier&>(*m_object).string();
if (is_computed())
return String::format("%s[<computed>]", object_string.characters());
ASSERT(m_property->is_identifier());
return String::format("%s.%s", object_string.characters(), static_cast<const Identifier&>(*m_property).string().characters());
}
Value MemberExpression::execute(Interpreter& interpreter) const
{
auto object_value = m_object->execute(interpreter);
if (interpreter.exception())
return {};
auto* object_result = object_value.to_object(interpreter);
if (interpreter.exception())
return {};
return object_result->get(computed_property_name(interpreter)).value_or(js_undefined());
}
Value StringLiteral::execute(Interpreter& interpreter) const
{
return js_string(interpreter, m_value);
}
Value NumericLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value BooleanLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value NullLiteral::execute(Interpreter&) const
{
return js_null();
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
if (element) {
element->dump(indent + 1);
} else {
print_indent(indent + 1);
printf("<empty>\n");
}
}
}
Value ArrayExpression::execute(Interpreter& interpreter) const
{
auto* array = Array::create(interpreter.global_object());
for (auto& element : m_elements) {
auto value = Value();
if (element) {
value = element->execute(interpreter);
if (interpreter.exception())
return {};
if (element->is_spread_expression()) {
// FIXME: Support arbitrary iterables
if (value.is_array()) {
auto& array_to_spread = static_cast<Array&>(value.as_object());
for (auto& it : array_to_spread.elements()) {
if (it.is_empty()) {
array->elements().append(js_undefined());
} else {
array->elements().append(it);
}
}
continue;
}
if (value.is_string() || (value.is_object() && value.as_object().is_string_object())) {
String string_to_spread;
if (value.is_string())
string_to_spread = value.as_string().string();
else
string_to_spread = static_cast<const StringObject&>(value.as_object()).primitive_string().string();
for (size_t i = 0; i < string_to_spread.length(); ++i)
array->elements().append(js_string(interpreter, string_to_spread.substring(i, 1)));
continue;
}
interpreter.throw_exception<TypeError>(String::format("%s is not iterable", value.to_string_without_side_effects().characters()));
return {};
}
}
array->elements().append(value);
}
return array;
}
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
void TemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
expression.dump(indent + 1);
}
Value TemplateLiteral::execute(Interpreter& interpreter) const
{
StringBuilder string_builder;
for (auto& expression : m_expressions) {
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
auto expr = expression.execute(interpreter);
if (interpreter.exception())
return {};
auto string = expr.to_string(interpreter);
if (interpreter.exception())
return {};
string_builder.append(string);
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
}
return js_string(interpreter, string_builder.build());
}
void TaggedTemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Tag)\n");
m_tag->dump(indent + 2);
print_indent(indent + 1);
printf("(Template Literal)\n");
m_template_literal->dump(indent + 2);
}
Value TaggedTemplateLiteral::execute(Interpreter& interpreter) const
{
auto tag = m_tag->execute(interpreter);
if (interpreter.exception())
return {};
if (!tag.is_function()) {
interpreter.throw_exception<TypeError>(String::format("%s is not a function", tag.to_string_without_side_effects().characters()));
return {};
}
auto& tag_function = tag.as_function();
auto& expressions = m_template_literal->expressions();
auto* strings = Array::create(interpreter.global_object());
MarkedValueList arguments(interpreter.heap());
arguments.append(strings);
for (size_t i = 0; i < expressions.size(); ++i) {
auto value = expressions[i].execute(interpreter);
if (interpreter.exception())
return {};
// tag`${foo}` -> "", foo, "" -> tag(["", ""], foo)
// tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
if (i % 2 == 0)
strings->elements().append(value);
else
arguments.append(value);
}
auto* raw_strings = Array::create(interpreter.global_object());
for (auto& raw_string : m_template_literal->raw_strings()) {
auto value = raw_string.execute(interpreter);
if (interpreter.exception())
return {};
raw_strings->elements().append(value);
}
strings->put("raw", raw_strings, 0);
return interpreter.call(tag_function, js_undefined(), move(arguments));
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Block)\n");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
printf("(Handler)\n");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
printf("(Finalizer)\n");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
printf("CatchClause");
if (!m_parameter.is_null())
printf(" (%s)", m_parameter.characters());
printf("\n");
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
Value TryStatement::execute(Interpreter& interpreter) const
{
interpreter.run(block(), {}, ScopeType::Try);
if (auto* exception = interpreter.exception()) {
if (m_handler) {
interpreter.clear_exception();
ArgumentVector arguments { { m_handler->parameter(), exception->value() } };
interpreter.run(m_handler->body(), move(arguments));
}
}
if (m_finalizer)
m_finalizer->execute(interpreter);
return js_undefined();
}
Value CatchClause::execute(Interpreter&) const
{
// NOTE: CatchClause execution is handled by TryStatement.
ASSERT_NOT_REACHED();
return {};
}
Value ThrowStatement::execute(Interpreter& interpreter) const
{
auto value = m_argument->execute(interpreter);
if (interpreter.exception())
return {};
return interpreter.throw_exception(value);
}
Value SwitchStatement::execute(Interpreter& interpreter) const
{
auto discriminant_result = m_discriminant->execute(interpreter);
if (interpreter.exception())
return {};
bool falling_through = false;
for (auto& switch_case : m_cases) {
if (!falling_through && switch_case.test()) {
auto test_result = switch_case.test()->execute(interpreter);
if (interpreter.exception())
return {};
if (!strict_eq(interpreter, discriminant_result, test_result))
continue;
}
falling_through = true;
for (auto& statement : switch_case.consequent()) {
statement.execute(interpreter);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
return {};
}
return {};
}
}
}
return js_undefined();
}
Value SwitchCase::execute(Interpreter& interpreter) const
{
(void)interpreter;
return {};
}
Value BreakStatement::execute(Interpreter& interpreter) const
{
interpreter.unwind(ScopeType::Breakable);
return js_undefined();
}
Value ContinueStatement::execute(Interpreter& interpreter) const
{
interpreter.unwind(ScopeType::Continuable);
return js_undefined();
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case.dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_test) {
printf("(Test)\n");
m_test->dump(indent + 2);
} else {
printf("(Default)\n");
}
print_indent(indent + 1);
printf("(Consequent)\n");
for (auto& statement : m_consequent)
statement.dump(indent + 2);
}
Value ConditionalExpression::execute(Interpreter& interpreter) const
{
auto test_result = m_test->execute(interpreter);
if (interpreter.exception())
return {};
Value result;
if (test_result.to_boolean()) {
result = m_consequent->execute(interpreter);
} else {
result = m_alternate->execute(interpreter);
}
if (interpreter.exception())
return {};
return result;
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
print_indent(indent + 1);
printf("(Test)\n");
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
m_test->dump(indent + 2);
print_indent(indent + 1);
printf("(Consequent)\n");
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
m_consequent->dump(indent + 2);
print_indent(indent + 1);
printf("(Alternate)\n");
LibJS: Add template literals Adds fully functioning template literals. Because template literals contain expressions, most of the work has to be done in the Lexer rather than the Parser. And because of the complexity of template literals (expressions, nesting, escapes, etc), the Lexer needs to have some template-related state. When entering a new template literal, a TemplateLiteralStart token is emitted. When inside a literal, all text will be parsed up until a '${' or '`' (or EOF, but that's a syntax error) is seen, and then a TemplateLiteralExprStart token is emitted. At this point, the Lexer proceeds as normal, however it keeps track of the number of opening and closing curly braces it has seen in order to determine the close of the expression. Once it finds a matching curly brace for the '${', a TemplateLiteralExprEnd token is emitted and the state is updated accordingly. When the Lexer is inside of a template literal, but not an expression, and sees a '`', this must be the closing grave: a TemplateLiteralEnd token is emitted. The state required to correctly parse template strings consists of a vector (for nesting) of two pieces of information: whether or not we are in a template expression (as opposed to a template string); and the count of the number of unmatched open curly braces we have seen (only applicable if the Lexer is currently in a template expression). TODO: Add support for template literal newlines in the JS REPL (this will cause a syntax error currently): > `foo > bar` 'foo bar'
2020-05-03 15:41:14 -07:00
m_alternate->dump(indent + 2);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value SequenceExpression::execute(Interpreter& interpreter) const
{
Value last_value;
for (auto& expression : m_expressions) {
last_value = expression.execute(interpreter);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DebuggerStatement::execute(Interpreter&) const
{
dbg() << "Sorry, no JavaScript debugger available (yet)!";
return js_undefined();
}
void ScopeNode::add_variables(NonnullRefPtrVector<VariableDeclaration> variables)
{
m_variables.append(move(variables));
}
}