|
@@ -1,4 +1,5 @@
|
|
|
import os
|
|
|
+import io
|
|
|
from typing import Any
|
|
|
|
|
|
from cache import ModelCache
|
|
@@ -9,52 +10,44 @@ from schemas import (
|
|
|
MessageResponse,
|
|
|
TextModelRequest,
|
|
|
TextResponse,
|
|
|
- VisionModelRequest,
|
|
|
)
|
|
|
import uvicorn
|
|
|
-
|
|
|
from PIL import Image
|
|
|
-from fastapi import FastAPI, HTTPException
|
|
|
+from fastapi import FastAPI, HTTPException, Depends, Body
|
|
|
from models import get_model, run_classification, run_facial_recognition
|
|
|
-
|
|
|
-classification_model = os.getenv(
|
|
|
- "MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
|
|
|
-)
|
|
|
-clip_image_model = os.getenv("MACHINE_LEARNING_CLIP_IMAGE_MODEL", "clip-ViT-B-32")
|
|
|
-clip_text_model = os.getenv("MACHINE_LEARNING_CLIP_TEXT_MODEL", "clip-ViT-B-32")
|
|
|
-facial_recognition_model = os.getenv(
|
|
|
- "MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
|
|
|
-)
|
|
|
-
|
|
|
-min_tag_score = float(os.getenv("MACHINE_LEARNING_MIN_TAG_SCORE", 0.9))
|
|
|
-eager_startup = (
|
|
|
- os.getenv("MACHINE_LEARNING_EAGER_STARTUP", "true") == "true"
|
|
|
-) # loads all models at startup
|
|
|
-model_ttl = int(os.getenv("MACHINE_LEARNING_MODEL_TTL", 300))
|
|
|
+from config import settings
|
|
|
|
|
|
_model_cache = None
|
|
|
+
|
|
|
app = FastAPI()
|
|
|
|
|
|
|
|
|
@app.on_event("startup")
|
|
|
async def startup_event() -> None:
|
|
|
global _model_cache
|
|
|
- _model_cache = ModelCache(ttl=model_ttl, revalidate=True)
|
|
|
+ _model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
|
|
|
models = [
|
|
|
- (classification_model, "image-classification"),
|
|
|
- (clip_image_model, "clip"),
|
|
|
- (clip_text_model, "clip"),
|
|
|
- (facial_recognition_model, "facial-recognition"),
|
|
|
+ (settings.classification_model, "image-classification"),
|
|
|
+ (settings.clip_image_model, "clip"),
|
|
|
+ (settings.clip_text_model, "clip"),
|
|
|
+ (settings.facial_recognition_model, "facial-recognition"),
|
|
|
]
|
|
|
|
|
|
# Get all models
|
|
|
for model_name, model_type in models:
|
|
|
- if eager_startup:
|
|
|
+ if settings.eager_startup:
|
|
|
await _model_cache.get_cached_model(model_name, model_type)
|
|
|
else:
|
|
|
get_model(model_name, model_type)
|
|
|
|
|
|
|
|
|
+def dep_model_cache():
|
|
|
+ if _model_cache is None:
|
|
|
+ raise HTTPException(status_code=500, detail="Unable to load model.")
|
|
|
+
|
|
|
+def dep_input_image(image: bytes = Body(...)) -> Image:
|
|
|
+ return Image.open(io.BytesIO(image))
|
|
|
+
|
|
|
@app.get("/", response_model=MessageResponse)
|
|
|
async def root() -> dict[str, str]:
|
|
|
return {"message": "Immich ML"}
|
|
@@ -65,29 +58,36 @@ def ping() -> str:
|
|
|
return "pong"
|
|
|
|
|
|
|
|
|
-@app.post("/image-classifier/tag-image", response_model=TagResponse, status_code=200)
|
|
|
-async def image_classification(payload: VisionModelRequest) -> list[str]:
|
|
|
- if _model_cache is None:
|
|
|
- raise HTTPException(status_code=500, detail="Unable to load model.")
|
|
|
-
|
|
|
- model = await _model_cache.get_cached_model(
|
|
|
- classification_model, "image-classification"
|
|
|
- )
|
|
|
- labels = run_classification(model, payload.image_path, min_tag_score)
|
|
|
- return labels
|
|
|
+@app.post(
|
|
|
+ "/image-classifier/tag-image",
|
|
|
+ response_model=TagResponse,
|
|
|
+ status_code=200,
|
|
|
+ dependencies=[Depends(dep_model_cache)],
|
|
|
+)
|
|
|
+async def image_classification(
|
|
|
+ image: Image = Depends(dep_input_image)
|
|
|
+) -> list[str]:
|
|
|
+ try:
|
|
|
+ model = await _model_cache.get_cached_model(
|
|
|
+ settings.classification_model, "image-classification"
|
|
|
+ )
|
|
|
+ labels = run_classification(model, image, settings.min_tag_score)
|
|
|
+ except Exception as ex:
|
|
|
+ raise HTTPException(status_code=500, detail=str(ex))
|
|
|
+ else:
|
|
|
+ return labels
|
|
|
|
|
|
|
|
|
@app.post(
|
|
|
"/sentence-transformer/encode-image",
|
|
|
response_model=EmbeddingResponse,
|
|
|
status_code=200,
|
|
|
+ dependencies=[Depends(dep_model_cache)],
|
|
|
)
|
|
|
-async def clip_encode_image(payload: VisionModelRequest) -> list[float]:
|
|
|
- if _model_cache is None:
|
|
|
- raise HTTPException(status_code=500, detail="Unable to load model.")
|
|
|
-
|
|
|
- model = await _model_cache.get_cached_model(clip_image_model, "clip")
|
|
|
- image = Image.open(payload.image_path)
|
|
|
+async def clip_encode_image(
|
|
|
+ image: Image = Depends(dep_input_image)
|
|
|
+) -> list[float]:
|
|
|
+ model = await _model_cache.get_cached_model(settings.clip_image_model, "clip")
|
|
|
embedding = model.encode(image).tolist()
|
|
|
return embedding
|
|
|
|
|
@@ -96,33 +96,38 @@ async def clip_encode_image(payload: VisionModelRequest) -> list[float]:
|
|
|
"/sentence-transformer/encode-text",
|
|
|
response_model=EmbeddingResponse,
|
|
|
status_code=200,
|
|
|
+ dependencies=[Depends(dep_model_cache)],
|
|
|
)
|
|
|
-async def clip_encode_text(payload: TextModelRequest) -> list[float]:
|
|
|
- if _model_cache is None:
|
|
|
- raise HTTPException(status_code=500, detail="Unable to load model.")
|
|
|
-
|
|
|
- model = await _model_cache.get_cached_model(clip_text_model, "clip")
|
|
|
+async def clip_encode_text(
|
|
|
+ payload: TextModelRequest
|
|
|
+) -> list[float]:
|
|
|
+ model = await _model_cache.get_cached_model(settings.clip_text_model, "clip")
|
|
|
embedding = model.encode(payload.text).tolist()
|
|
|
return embedding
|
|
|
|
|
|
|
|
|
@app.post(
|
|
|
- "/facial-recognition/detect-faces", response_model=FaceResponse, status_code=200
|
|
|
+ "/facial-recognition/detect-faces",
|
|
|
+ response_model=FaceResponse,
|
|
|
+ status_code=200,
|
|
|
+ dependencies=[Depends(dep_model_cache)],
|
|
|
)
|
|
|
-async def facial_recognition(payload: VisionModelRequest) -> list[dict[str, Any]]:
|
|
|
- if _model_cache is None:
|
|
|
- raise HTTPException(status_code=500, detail="Unable to load model.")
|
|
|
-
|
|
|
+async def facial_recognition(
|
|
|
+ image: bytes = Body(...),
|
|
|
+) -> list[dict[str, Any]]:
|
|
|
model = await _model_cache.get_cached_model(
|
|
|
- facial_recognition_model, "facial-recognition"
|
|
|
+ settings.facial_recognition_model, "facial-recognition"
|
|
|
)
|
|
|
- faces = run_facial_recognition(model, payload.image_path)
|
|
|
+ faces = run_facial_recognition(model, image)
|
|
|
return faces
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
- host = os.getenv("MACHINE_LEARNING_HOST", "0.0.0.0")
|
|
|
- port = int(os.getenv("MACHINE_LEARNING_PORT", 3003))
|
|
|
is_dev = os.getenv("NODE_ENV") == "development"
|
|
|
-
|
|
|
- uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)
|
|
|
+ uvicorn.run(
|
|
|
+ "main:app",
|
|
|
+ host=settings.host,
|
|
|
+ port=settings.port,
|
|
|
+ reload=is_dev,
|
|
|
+ workers=settings.workers,
|
|
|
+ )
|