123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- import os
- import io
- from typing import Any
- from cache import ModelCache
- from schemas import (
- EmbeddingResponse,
- FaceResponse,
- TagResponse,
- MessageResponse,
- TextModelRequest,
- TextResponse,
- )
- import uvicorn
- from PIL import Image
- from fastapi import FastAPI, HTTPException, Depends, Body
- from models import get_model, run_classification, run_facial_recognition
- from config import settings
- _model_cache = None
- app = FastAPI()
- @app.on_event("startup")
- async def startup_event() -> None:
- global _model_cache
- _model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
- models = [
- (settings.classification_model, "image-classification"),
- (settings.clip_image_model, "clip"),
- (settings.clip_text_model, "clip"),
- (settings.facial_recognition_model, "facial-recognition"),
- ]
- # Get all models
- for model_name, model_type in models:
- if settings.eager_startup:
- await _model_cache.get_cached_model(model_name, model_type)
- else:
- get_model(model_name, model_type)
- def dep_model_cache():
- if _model_cache is None:
- raise HTTPException(status_code=500, detail="Unable to load model.")
- def dep_input_image(image: bytes = Body(...)) -> Image:
- return Image.open(io.BytesIO(image))
- @app.get("/", response_model=MessageResponse)
- async def root() -> dict[str, str]:
- return {"message": "Immich ML"}
- @app.get("/ping", response_model=TextResponse)
- def ping() -> str:
- return "pong"
- @app.post(
- "/image-classifier/tag-image",
- response_model=TagResponse,
- status_code=200,
- dependencies=[Depends(dep_model_cache)],
- )
- async def image_classification(
- image: Image = Depends(dep_input_image)
- ) -> list[str]:
- try:
- model = await _model_cache.get_cached_model(
- settings.classification_model, "image-classification"
- )
- labels = run_classification(model, image, settings.min_tag_score)
- except Exception as ex:
- raise HTTPException(status_code=500, detail=str(ex))
- else:
- return labels
- @app.post(
- "/sentence-transformer/encode-image",
- response_model=EmbeddingResponse,
- status_code=200,
- dependencies=[Depends(dep_model_cache)],
- )
- async def clip_encode_image(
- image: Image = Depends(dep_input_image)
- ) -> list[float]:
- model = await _model_cache.get_cached_model(settings.clip_image_model, "clip")
- embedding = model.encode(image).tolist()
- return embedding
- @app.post(
- "/sentence-transformer/encode-text",
- response_model=EmbeddingResponse,
- status_code=200,
- dependencies=[Depends(dep_model_cache)],
- )
- async def clip_encode_text(
- payload: TextModelRequest
- ) -> list[float]:
- model = await _model_cache.get_cached_model(settings.clip_text_model, "clip")
- embedding = model.encode(payload.text).tolist()
- return embedding
- @app.post(
- "/facial-recognition/detect-faces",
- response_model=FaceResponse,
- status_code=200,
- dependencies=[Depends(dep_model_cache)],
- )
- async def facial_recognition(
- image: bytes = Body(...),
- ) -> list[dict[str, Any]]:
- model = await _model_cache.get_cached_model(
- settings.facial_recognition_model, "facial-recognition"
- )
- faces = run_facial_recognition(model, image)
- return faces
- if __name__ == "__main__":
- is_dev = os.getenv("NODE_ENV") == "development"
- uvicorn.run(
- "main:app",
- host=settings.host,
- port=settings.port,
- reload=is_dev,
- workers=settings.workers,
- )
|