This commit is contained in:
Manav Rathi 2024-04-11 13:40:35 +05:30
parent d3eb85be8d
commit 2b6047a979
No known key found for this signature in database
3 changed files with 404 additions and 0 deletions

View file

@ -0,0 +1,248 @@
/**
* @file Compute CLIP embeddings for images and text.
*
* The embeddings are computed using ONNX runtime, with CLIP as the model.
*
* @see `web/apps/photos/src/services/clip-service.ts` for more details.
*/
import { existsSync } from "fs";
import jpeg from "jpeg-js";
import fs from "node:fs/promises";
import * as ort from "onnxruntime-node";
import Tokenizer from "../../thirdparty/clip-bpe-ts/mod";
import { CustomErrors } from "../../types/ipc";
import { writeStream } from "../fs";
import log from "../log";
import { generateTempFilePath } from "../temp";
import { deleteTempFile } from "./ffmpeg";
import {
createInferenceSession,
downloadModel,
modelPathDownloadingIfNeeded,
modelSavePath,
} from "./ml";
const textModelName = "clip-text-vit-32-uint8.onnx";
const textModelByteSize = 64173509; // 61.2 MB
const imageModelName = "clip-image-vit-32-float32.onnx";
const imageModelByteSize = 351468764; // 335.2 MB
let activeImageModelDownload: Promise<string> | undefined;
const imageModelPathDownloadingIfNeeded = async () => {
try {
if (activeImageModelDownload) {
log.info("Waiting for CLIP image model download to finish");
await activeImageModelDownload;
} else {
activeImageModelDownload = modelPathDownloadingIfNeeded(
imageModelName,
imageModelByteSize,
);
return await activeImageModelDownload;
}
} finally {
activeImageModelDownload = undefined;
}
};
let textModelDownloadInProgress = false;
/* TODO(MR): use the generic method. Then we can remove the exports for the
internal details functions that we use here */
const textModelPathDownloadingIfNeeded = async () => {
if (textModelDownloadInProgress)
throw Error(CustomErrors.MODEL_DOWNLOAD_PENDING);
const modelPath = modelSavePath(textModelName);
if (!existsSync(modelPath)) {
log.info("CLIP text model not found, downloading");
textModelDownloadInProgress = true;
downloadModel(modelPath, textModelName)
.catch((e) => {
// log but otherwise ignore
log.error("CLIP text model download failed", e);
})
.finally(() => {
textModelDownloadInProgress = false;
});
throw Error(CustomErrors.MODEL_DOWNLOAD_PENDING);
} else {
const localFileSize = (await fs.stat(modelPath)).size;
if (localFileSize !== textModelByteSize) {
log.error(
`CLIP text model size ${localFileSize} does not match the expected size, downloading again`,
);
textModelDownloadInProgress = true;
downloadModel(modelPath, textModelName)
.catch((e) => {
// log but otherwise ignore
log.error("CLIP text model download failed", e);
})
.finally(() => {
textModelDownloadInProgress = false;
});
throw Error(CustomErrors.MODEL_DOWNLOAD_PENDING);
}
}
return modelPath;
};
let imageSessionPromise: Promise<any> | undefined;
const onnxImageSession = async () => {
if (!imageSessionPromise) {
imageSessionPromise = (async () => {
const modelPath = await imageModelPathDownloadingIfNeeded();
return createInferenceSession(modelPath);
})();
}
return imageSessionPromise;
};
let _textSession: any = null;
const onnxTextSession = async () => {
if (!_textSession) {
const modelPath = await textModelPathDownloadingIfNeeded();
_textSession = await createInferenceSession(modelPath);
}
return _textSession;
};
export const clipImageEmbedding = async (jpegImageData: Uint8Array) => {
const tempFilePath = await generateTempFilePath("");
const imageStream = new Response(jpegImageData.buffer).body;
await writeStream(tempFilePath, imageStream);
try {
return await clipImageEmbedding_(tempFilePath);
} finally {
await deleteTempFile(tempFilePath);
}
};
const clipImageEmbedding_ = async (jpegFilePath: string) => {
const imageSession = await onnxImageSession();
const t1 = Date.now();
const rgbData = await getRGBData(jpegFilePath);
const feeds = {
input: new ort.Tensor("float32", rgbData, [1, 3, 224, 224]),
};
const t2 = Date.now();
const results = await imageSession.run(feeds);
log.debug(
() =>
`CLIP image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
);
const imageEmbedding = results["output"].data; // Float32Array
return normalizeEmbedding(imageEmbedding);
};
const getRGBData = async (jpegFilePath: string) => {
const jpegData = await fs.readFile(jpegFilePath);
const rawImageData = jpeg.decode(jpegData, {
useTArray: true,
formatAsRGBA: false,
});
const nx: number = rawImageData.width;
const ny: number = rawImageData.height;
const inputImage: Uint8Array = rawImageData.data;
const nx2: number = 224;
const ny2: number = 224;
const totalSize: number = 3 * nx2 * ny2;
const result: number[] = Array(totalSize).fill(0);
const scale: number = Math.max(nx, ny) / 224;
const nx3: number = Math.round(nx / scale);
const ny3: number = Math.round(ny / scale);
const mean: number[] = [0.48145466, 0.4578275, 0.40821073];
const std: number[] = [0.26862954, 0.26130258, 0.27577711];
for (let y = 0; y < ny3; y++) {
for (let x = 0; x < nx3; x++) {
for (let c = 0; c < 3; c++) {
// Linear interpolation
const sx: number = (x + 0.5) * scale - 0.5;
const sy: number = (y + 0.5) * scale - 0.5;
const x0: number = Math.max(0, Math.floor(sx));
const y0: number = Math.max(0, Math.floor(sy));
const x1: number = Math.min(x0 + 1, nx - 1);
const y1: number = Math.min(y0 + 1, ny - 1);
const dx: number = sx - x0;
const dy: number = sy - y0;
const j00: number = 3 * (y0 * nx + x0) + c;
const j01: number = 3 * (y0 * nx + x1) + c;
const j10: number = 3 * (y1 * nx + x0) + c;
const j11: number = 3 * (y1 * nx + x1) + c;
const v00: number = inputImage[j00];
const v01: number = inputImage[j01];
const v10: number = inputImage[j10];
const v11: number = inputImage[j11];
const v0: number = v00 * (1 - dx) + v01 * dx;
const v1: number = v10 * (1 - dx) + v11 * dx;
const v: number = v0 * (1 - dy) + v1 * dy;
const v2: number = Math.min(Math.max(Math.round(v), 0), 255);
// createTensorWithDataList is dumb compared to reshape and
// hence has to be given with one channel after another
const i: number = y * nx3 + x + (c % 3) * 224 * 224;
result[i] = (v2 / 255 - mean[c]) / std[c];
}
}
}
return result;
};
const normalizeEmbedding = (embedding: Float32Array) => {
let normalization = 0;
for (let index = 0; index < embedding.length; index++) {
normalization += embedding[index] * embedding[index];
}
const sqrtNormalization = Math.sqrt(normalization);
for (let index = 0; index < embedding.length; index++) {
embedding[index] = embedding[index] / sqrtNormalization;
}
return embedding;
};
let _tokenizer: Tokenizer = null;
const getTokenizer = () => {
if (!_tokenizer) {
_tokenizer = new Tokenizer();
}
return _tokenizer;
};
export const clipTextEmbedding = async (text: string) => {
const imageSession = await onnxTextSession();
const t1 = Date.now();
const tokenizer = getTokenizer();
const tokenizedText = Int32Array.from(tokenizer.encodeForCLIP(text));
const feeds = {
input: new ort.Tensor("int32", tokenizedText, [1, 77]),
};
const t2 = Date.now();
const results = await imageSession.run(feeds);
log.debug(
() =>
`CLIP text embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
);
const textEmbedding = results["output"].data;
return normalizeEmbedding(textEmbedding);
};

View file

@ -0,0 +1,77 @@
/**
* @file Various face recognition related tasks.
*
* - Face detection with the YOLO model.
* - Face embedding with the mobilefacenet model.
*
* The runtime used is ONNX.
*/
import * as ort from "onnxruntime-node";
import log from "../log";
import { createInferenceSession, modelPathDownloadingIfNeeded } from "./ml";
const faceDetectionModelName = "yolov5s_face_640_640_dynamic.onnx";
const faceDetectionModelByteSize = 30762872; // 29.3 MB
const faceEmbeddingModelName = "mobilefacenet_opset15.onnx";
const faceEmbeddingModelByteSize = 5286998; // 5 MB
let activeFaceDetectionModelDownload: Promise<string> | undefined;
const faceDetectionModelPathDownloadingIfNeeded = async () => {
try {
if (activeFaceDetectionModelDownload) {
log.info("Waiting for face detection model download to finish");
await activeFaceDetectionModelDownload;
} else {
activeFaceDetectionModelDownload = modelPathDownloadingIfNeeded(
faceDetectionModelName,
faceDetectionModelByteSize,
);
return await activeFaceDetectionModelDownload;
}
} finally {
activeFaceDetectionModelDownload = undefined;
}
};
let _faceDetectionSession: Promise<ort.InferenceSession> | undefined;
const faceDetectionSession = async () => {
if (!_faceDetectionSession) {
_faceDetectionSession =
faceDetectionModelPathDownloadingIfNeeded().then((modelPath) =>
createInferenceSession(modelPath),
);
}
return _faceDetectionSession;
};
// export const clipImageEmbedding = async (jpegImageData: Uint8Array) => {
// const tempFilePath = await generateTempFilePath("");
// const imageStream = new Response(jpegImageData.buffer).body;
// await writeStream(tempFilePath, imageStream);
// try {
// return await clipImageEmbedding_(tempFilePath);
// } finally {
// await deleteTempFile(tempFilePath);
// }
// };
// const clipImageEmbedding_ = async (jpegFilePath: string) => {
// const imageSession = await onnxImageSession();
// const t1 = Date.now();
// const rgbData = await getRGBData(jpegFilePath);
// const feeds = {
// input: new ort.Tensor("float32", rgbData, [1, 3, 224, 224]),
// };
// const t2 = Date.now();
// const results = await imageSession.run(feeds);
// log.debug(
// () =>
// `CLIP image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
// );
// const imageEmbedding = results["output"].data; // Float32Array
// return normalizeEmbedding(imageEmbedding);
// };

View file

@ -0,0 +1,79 @@
/**
* @file AI/ML related functionality.
*
* @see also `ml-clip.ts`, `ml-face.ts`.
*
* The ML runtime we use for inference is [ONNX](https://onnxruntime.ai). Models
* for various tasks are not shipped with the app but are downloaded on demand.
*
* The primary reason for doing these tasks in the Node.js layer is so that we
* can use the binary ONNX runtime which is 10-20x faster than the WASM based
* web one.
*/
import { app, net } from "electron/main";
import { existsSync } from "fs";
import fs from "node:fs/promises";
import path from "node:path";
import * as ort from "onnxruntime-node";
import { writeStream } from "../fs";
import log from "../log";
/**
* Download the model named {@link modelName} if we don't already have it.
*
* Also verify that the size of the model we get matches {@expectedByteSize} (if
* not, redownload it).
*
* @returns the path to the model on the local machine.
*/
export const modelPathDownloadingIfNeeded = async (
modelName: string,
expectedByteSize: number,
) => {
const modelPath = modelSavePath(modelName);
if (!existsSync(modelPath)) {
log.info("CLIP image model not found, downloading");
await downloadModel(modelPath, modelName);
} else {
const size = (await fs.stat(modelPath)).size;
if (size !== expectedByteSize) {
log.error(
`The size ${size} of model ${modelName} does not match the expected size, downloading again`,
);
await downloadModel(modelPath, modelName);
}
}
return modelPath;
};
/** Return the path where the given {@link modelName} is meant to be saved */
export const modelSavePath = (modelName: string) =>
path.join(app.getPath("userData"), "models", modelName);
export const downloadModel = async (saveLocation: string, name: string) => {
// `mkdir -p` the directory where we want to save the model.
const saveDir = path.dirname(saveLocation);
await fs.mkdir(saveDir, { recursive: true });
// Download
log.info(`Downloading ML model from ${name}`);
const url = `https://models.ente.io/${name}`;
const res = await net.fetch(url);
if (!res.ok) throw new Error(`Failed to fetch ${url}: HTTP ${res.status}`);
// Save
await writeStream(saveLocation, res.body);
log.info(`Downloaded CLIP model ${name}`);
};
/**
* Crete an ONNX {@link InferenceSession} with some defaults.
*/
export const createInferenceSession = async (modelPath: string) => {
return await ort.InferenceSession.create(modelPath, {
// Restrict the number of threads to 1
intraOpNumThreads: 1,
// Be more conservative with RAM usage
enableCpuMemArena: false,
});
};