Split
This commit is contained in:
parent
bbdbad5891
commit
d3eb85be8d
2 changed files with 1 additions and 289 deletions
|
@ -36,7 +36,7 @@ import {
|
|||
updateAndRestart,
|
||||
updateOnNextRestart,
|
||||
} from "./services/app-update";
|
||||
import { clipImageEmbedding, clipTextEmbedding } from "./services/clip";
|
||||
import { clipImageEmbedding, clipTextEmbedding } from "./services/ml-clip";
|
||||
import { runFFmpegCmd } from "./services/ffmpeg";
|
||||
import { getDirFiles } from "./services/fs";
|
||||
import {
|
||||
|
|
|
@ -1,288 +0,0 @@
|
|||
/**
|
||||
* @file Compute CLIP embeddings
|
||||
*
|
||||
* @see `web/apps/photos/src/services/clip-service.ts` for more details. This
|
||||
* file implements the Node.js implementation of the actual embedding
|
||||
* computation. By doing it in the Node.js layer, we can use the binary ONNX
|
||||
* runtimes which are 10-20x faster than the WASM based web ones.
|
||||
*
|
||||
* The embeddings are computed using ONNX runtime. The model itself is not
|
||||
* shipped with the app but is downloaded on demand.
|
||||
*/
|
||||
import { app, net } from "electron/main";
|
||||
import { existsSync } from "fs";
|
||||
import jpeg from "jpeg-js";
|
||||
import fs from "node:fs/promises";
|
||||
import path from "node:path";
|
||||
import * as ort from "onnxruntime-node";
|
||||
import Tokenizer from "../../thirdparty/clip-bpe-ts/mod";
|
||||
import { CustomErrors } from "../../types/ipc";
|
||||
import { writeStream } from "../fs";
|
||||
import log from "../log";
|
||||
import { generateTempFilePath } from "../temp";
|
||||
import { deleteTempFile } from "./ffmpeg";
|
||||
|
||||
const textModelName = "clip-text-vit-32-uint8.onnx";
|
||||
const textModelByteSize = 64173509; // 61.2 MB
|
||||
|
||||
const imageModelName = "clip-image-vit-32-float32.onnx";
|
||||
const imageModelByteSize = 351468764; // 335.2 MB
|
||||
|
||||
/** Return the path where the given {@link modelName} is meant to be saved */
|
||||
const modelSavePath = (modelName: string) =>
|
||||
path.join(app.getPath("userData"), "models", modelName);
|
||||
|
||||
const downloadModel = async (saveLocation: string, name: string) => {
|
||||
// `mkdir -p` the directory where we want to save the model.
|
||||
const saveDir = path.dirname(saveLocation);
|
||||
await fs.mkdir(saveDir, { recursive: true });
|
||||
// Download
|
||||
log.info(`Downloading CLIP model from ${name}`);
|
||||
const url = `https://models.ente.io/${name}`;
|
||||
const res = await net.fetch(url);
|
||||
if (!res.ok) throw new Error(`Failed to fetch ${url}: HTTP ${res.status}`);
|
||||
// Save
|
||||
await writeStream(saveLocation, res.body);
|
||||
log.info(`Downloaded CLIP model ${name}`);
|
||||
};
|
||||
|
||||
let activeImageModelDownload: Promise<void> | undefined;
|
||||
|
||||
const imageModelPathDownloadingIfNeeded = async () => {
|
||||
try {
|
||||
const modelPath = modelSavePath(imageModelName);
|
||||
if (activeImageModelDownload) {
|
||||
log.info("Waiting for CLIP image model download to finish");
|
||||
await activeImageModelDownload;
|
||||
} else {
|
||||
if (!existsSync(modelPath)) {
|
||||
log.info("CLIP image model not found, downloading");
|
||||
activeImageModelDownload = downloadModel(
|
||||
modelPath,
|
||||
imageModelName,
|
||||
);
|
||||
await activeImageModelDownload;
|
||||
} else {
|
||||
const localFileSize = (await fs.stat(modelPath)).size;
|
||||
if (localFileSize !== imageModelByteSize) {
|
||||
log.error(
|
||||
`CLIP image model size ${localFileSize} does not match the expected size, downloading again`,
|
||||
);
|
||||
activeImageModelDownload = downloadModel(
|
||||
modelPath,
|
||||
imageModelName,
|
||||
);
|
||||
await activeImageModelDownload;
|
||||
}
|
||||
}
|
||||
}
|
||||
return modelPath;
|
||||
} finally {
|
||||
activeImageModelDownload = undefined;
|
||||
}
|
||||
};
|
||||
|
||||
let textModelDownloadInProgress = false;
|
||||
|
||||
const textModelPathDownloadingIfNeeded = async () => {
|
||||
if (textModelDownloadInProgress)
|
||||
throw Error(CustomErrors.MODEL_DOWNLOAD_PENDING);
|
||||
|
||||
const modelPath = modelSavePath(textModelName);
|
||||
if (!existsSync(modelPath)) {
|
||||
log.info("CLIP text model not found, downloading");
|
||||
textModelDownloadInProgress = true;
|
||||
downloadModel(modelPath, textModelName)
|
||||
.catch((e) => {
|
||||
// log but otherwise ignore
|
||||
log.error("CLIP text model download failed", e);
|
||||
})
|
||||
.finally(() => {
|
||||
textModelDownloadInProgress = false;
|
||||
});
|
||||
throw Error(CustomErrors.MODEL_DOWNLOAD_PENDING);
|
||||
} else {
|
||||
const localFileSize = (await fs.stat(modelPath)).size;
|
||||
if (localFileSize !== textModelByteSize) {
|
||||
log.error(
|
||||
`CLIP text model size ${localFileSize} does not match the expected size, downloading again`,
|
||||
);
|
||||
textModelDownloadInProgress = true;
|
||||
downloadModel(modelPath, textModelName)
|
||||
.catch((e) => {
|
||||
// log but otherwise ignore
|
||||
log.error("CLIP text model download failed", e);
|
||||
})
|
||||
.finally(() => {
|
||||
textModelDownloadInProgress = false;
|
||||
});
|
||||
throw Error(CustomErrors.MODEL_DOWNLOAD_PENDING);
|
||||
}
|
||||
}
|
||||
|
||||
return modelPath;
|
||||
};
|
||||
|
||||
const createInferenceSession = async (modelPath: string) => {
|
||||
return await ort.InferenceSession.create(modelPath, {
|
||||
intraOpNumThreads: 1,
|
||||
enableCpuMemArena: false,
|
||||
});
|
||||
};
|
||||
|
||||
let imageSessionPromise: Promise<any> | undefined;
|
||||
|
||||
const onnxImageSession = async () => {
|
||||
if (!imageSessionPromise) {
|
||||
imageSessionPromise = (async () => {
|
||||
const modelPath = await imageModelPathDownloadingIfNeeded();
|
||||
return createInferenceSession(modelPath);
|
||||
})();
|
||||
}
|
||||
return imageSessionPromise;
|
||||
};
|
||||
|
||||
let _textSession: any = null;
|
||||
|
||||
const onnxTextSession = async () => {
|
||||
if (!_textSession) {
|
||||
const modelPath = await textModelPathDownloadingIfNeeded();
|
||||
_textSession = await createInferenceSession(modelPath);
|
||||
}
|
||||
return _textSession;
|
||||
};
|
||||
|
||||
export const clipImageEmbedding = async (jpegImageData: Uint8Array) => {
|
||||
const tempFilePath = await generateTempFilePath("");
|
||||
const imageStream = new Response(jpegImageData.buffer).body;
|
||||
await writeStream(tempFilePath, imageStream);
|
||||
try {
|
||||
return await clipImageEmbedding_(tempFilePath);
|
||||
} finally {
|
||||
await deleteTempFile(tempFilePath);
|
||||
}
|
||||
};
|
||||
|
||||
const clipImageEmbedding_ = async (jpegFilePath: string) => {
|
||||
const imageSession = await onnxImageSession();
|
||||
const t1 = Date.now();
|
||||
const rgbData = await getRGBData(jpegFilePath);
|
||||
const feeds = {
|
||||
input: new ort.Tensor("float32", rgbData, [1, 3, 224, 224]),
|
||||
};
|
||||
const t2 = Date.now();
|
||||
const results = await imageSession.run(feeds);
|
||||
log.debug(
|
||||
() =>
|
||||
`CLIP image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
);
|
||||
const imageEmbedding = results["output"].data; // Float32Array
|
||||
return normalizeEmbedding(imageEmbedding);
|
||||
};
|
||||
|
||||
const getRGBData = async (jpegFilePath: string) => {
|
||||
const jpegData = await fs.readFile(jpegFilePath);
|
||||
const rawImageData = jpeg.decode(jpegData, {
|
||||
useTArray: true,
|
||||
formatAsRGBA: false,
|
||||
});
|
||||
|
||||
const nx: number = rawImageData.width;
|
||||
const ny: number = rawImageData.height;
|
||||
const inputImage: Uint8Array = rawImageData.data;
|
||||
|
||||
const nx2: number = 224;
|
||||
const ny2: number = 224;
|
||||
const totalSize: number = 3 * nx2 * ny2;
|
||||
|
||||
const result: number[] = Array(totalSize).fill(0);
|
||||
const scale: number = Math.max(nx, ny) / 224;
|
||||
|
||||
const nx3: number = Math.round(nx / scale);
|
||||
const ny3: number = Math.round(ny / scale);
|
||||
|
||||
const mean: number[] = [0.48145466, 0.4578275, 0.40821073];
|
||||
const std: number[] = [0.26862954, 0.26130258, 0.27577711];
|
||||
|
||||
for (let y = 0; y < ny3; y++) {
|
||||
for (let x = 0; x < nx3; x++) {
|
||||
for (let c = 0; c < 3; c++) {
|
||||
// Linear interpolation
|
||||
const sx: number = (x + 0.5) * scale - 0.5;
|
||||
const sy: number = (y + 0.5) * scale - 0.5;
|
||||
|
||||
const x0: number = Math.max(0, Math.floor(sx));
|
||||
const y0: number = Math.max(0, Math.floor(sy));
|
||||
|
||||
const x1: number = Math.min(x0 + 1, nx - 1);
|
||||
const y1: number = Math.min(y0 + 1, ny - 1);
|
||||
|
||||
const dx: number = sx - x0;
|
||||
const dy: number = sy - y0;
|
||||
|
||||
const j00: number = 3 * (y0 * nx + x0) + c;
|
||||
const j01: number = 3 * (y0 * nx + x1) + c;
|
||||
const j10: number = 3 * (y1 * nx + x0) + c;
|
||||
const j11: number = 3 * (y1 * nx + x1) + c;
|
||||
|
||||
const v00: number = inputImage[j00];
|
||||
const v01: number = inputImage[j01];
|
||||
const v10: number = inputImage[j10];
|
||||
const v11: number = inputImage[j11];
|
||||
|
||||
const v0: number = v00 * (1 - dx) + v01 * dx;
|
||||
const v1: number = v10 * (1 - dx) + v11 * dx;
|
||||
|
||||
const v: number = v0 * (1 - dy) + v1 * dy;
|
||||
|
||||
const v2: number = Math.min(Math.max(Math.round(v), 0), 255);
|
||||
|
||||
// createTensorWithDataList is dumb compared to reshape and
|
||||
// hence has to be given with one channel after another
|
||||
const i: number = y * nx3 + x + (c % 3) * 224 * 224;
|
||||
|
||||
result[i] = (v2 / 255 - mean[c]) / std[c];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
const normalizeEmbedding = (embedding: Float32Array) => {
|
||||
let normalization = 0;
|
||||
for (let index = 0; index < embedding.length; index++) {
|
||||
normalization += embedding[index] * embedding[index];
|
||||
}
|
||||
const sqrtNormalization = Math.sqrt(normalization);
|
||||
for (let index = 0; index < embedding.length; index++) {
|
||||
embedding[index] = embedding[index] / sqrtNormalization;
|
||||
}
|
||||
return embedding;
|
||||
};
|
||||
|
||||
let _tokenizer: Tokenizer = null;
|
||||
const getTokenizer = () => {
|
||||
if (!_tokenizer) {
|
||||
_tokenizer = new Tokenizer();
|
||||
}
|
||||
return _tokenizer;
|
||||
};
|
||||
|
||||
export const clipTextEmbedding = async (text: string) => {
|
||||
const imageSession = await onnxTextSession();
|
||||
const t1 = Date.now();
|
||||
const tokenizer = getTokenizer();
|
||||
const tokenizedText = Int32Array.from(tokenizer.encodeForCLIP(text));
|
||||
const feeds = {
|
||||
input: new ort.Tensor("int32", tokenizedText, [1, 77]),
|
||||
};
|
||||
const t2 = Date.now();
|
||||
const results = await imageSession.run(feeds);
|
||||
log.debug(
|
||||
() =>
|
||||
`CLIP text embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
);
|
||||
const textEmbedding = results["output"].data;
|
||||
return normalizeEmbedding(textEmbedding);
|
||||
};
|
Loading…
Add table
Reference in a new issue