d96613b8fe
@joshdata squashed pull request #1398, removed some comments, and added these notes: * The old init.d script for the management daemon is replaced with a systemd service. * A systemd service configuration is added to configure permissions for munin on startup. * nginx SSL settings are updated because nginx's options and defaults have changed, and we now enable http2. * Automatic SSHFP record generation is updated to know that 22 is the default SSH daemon port, since it is no longer explicit in sshd_config. * The dovecot-lucene package is dropped because the Mail-in-a-Box PPA where we built the package has not been updated for Ubuntu 18.04. * The stock postgrey package is installed instead of the one from our PPA (which we no longer support), which loses the automatic whitelisting of DNSWL.org-whitelisted senders. * Drop memcached and the status check for memcached, which we used to use with ownCloud long ago but are no longer installing. * Other minor changes.
335 lines
13 KiB
Bash
Executable file
335 lines
13 KiB
Bash
Executable file
source /etc/mailinabox.conf
|
|
source setup/functions.sh # load our functions
|
|
|
|
# Basic System Configuration
|
|
# -------------------------
|
|
|
|
# ### Set hostname of the box
|
|
|
|
# If the hostname is not correctly resolvable sudo can't be used. This will result in
|
|
# errors during the install
|
|
#
|
|
# First set the hostname in the configuration file, then activate the setting
|
|
|
|
echo $PRIMARY_HOSTNAME > /etc/hostname
|
|
hostname $PRIMARY_HOSTNAME
|
|
|
|
# ### Add swap space to the system
|
|
|
|
# If the physical memory of the system is below 2GB it is wise to create a
|
|
# swap file. This will make the system more resiliant to memory spikes and
|
|
# prevent for instance spam filtering from crashing
|
|
|
|
# We will create a 1G file, this should be a good balance between disk usage
|
|
# and buffers for the system. We will only allocate this file if there is more
|
|
# than 5GB of disk space available
|
|
|
|
# The following checks are performed:
|
|
# - Check if swap is currently mountend by looking at /proc/swaps
|
|
# - Check if the user intents to activate swap on next boot by checking fstab entries.
|
|
# - Check if a swapfile already exists
|
|
# - Check if the root file system is not btrfs, might be an incompatible version with
|
|
# swapfiles. User should hanle it them selves.
|
|
# - Check the memory requirements
|
|
# - Check available diskspace
|
|
|
|
# See https://www.digitalocean.com/community/tutorials/how-to-add-swap-on-ubuntu-14-04
|
|
# for reference
|
|
|
|
SWAP_MOUNTED=$(cat /proc/swaps | tail -n+2)
|
|
SWAP_IN_FSTAB=$(grep "swap" /etc/fstab)
|
|
ROOT_IS_BTRFS=$(grep "\/ .*btrfs" /proc/mounts)
|
|
TOTAL_PHYSICAL_MEM=$(head -n 1 /proc/meminfo | awk '{print $2}')
|
|
AVAILABLE_DISK_SPACE=$(df / --output=avail | tail -n 1)
|
|
if
|
|
[ -z "$SWAP_MOUNTED" ] &&
|
|
[ -z "$SWAP_IN_FSTAB" ] &&
|
|
[ ! -e /swapfile ] &&
|
|
[ -z "$ROOT_IS_BTRFS" ] &&
|
|
[ $TOTAL_PHYSICAL_MEM -lt 1900000 ] &&
|
|
[ $AVAILABLE_DISK_SPACE -gt 5242880 ]
|
|
then
|
|
echo "Adding a swap file to the system..."
|
|
|
|
# Allocate and activate the swap file. Allocate in 1KB chuncks
|
|
# doing it in one go, could fail on low memory systems
|
|
dd if=/dev/zero of=/swapfile bs=1024 count=$[1024*1024] status=none
|
|
if [ -e /swapfile ]; then
|
|
chmod 600 /swapfile
|
|
hide_output mkswap /swapfile
|
|
swapon /swapfile
|
|
fi
|
|
|
|
# Check if swap is mounted then activate on boot
|
|
if swapon -s | grep -q "\/swapfile"; then
|
|
echo "/swapfile none swap sw 0 0" >> /etc/fstab
|
|
else
|
|
echo "ERROR: Swap allocation failed"
|
|
fi
|
|
fi
|
|
|
|
# ### Add PPAs.
|
|
|
|
# We install some non-standard Ubuntu packages maintained by other
|
|
# third-party providers. First ensure add-apt-repository is installed.
|
|
|
|
if [ ! -f /usr/bin/add-apt-repository ]; then
|
|
echo "Installing add-apt-repository..."
|
|
hide_output apt-get update
|
|
apt_install software-properties-common
|
|
fi
|
|
|
|
# Install the certbot PPA.
|
|
hide_output add-apt-repository -y ppa:certbot/certbot
|
|
|
|
# ### Update Packages
|
|
|
|
# Update system packages to make sure we have the latest upstream versions
|
|
# of things from Ubuntu, as well as the directory of packages provide by the
|
|
# PPAs so we can install those packages later.
|
|
|
|
echo Updating system packages...
|
|
hide_output apt-get update
|
|
apt_get_quiet upgrade
|
|
|
|
# Old kernels pile up over time and take up a lot of disk space, and because of Mail-in-a-Box
|
|
# changes there may be other packages that are no longer needed. Clear out anything apt knows
|
|
# is safe to delete.
|
|
|
|
apt_get_quiet autoremove
|
|
|
|
# ### Install System Packages
|
|
|
|
# Install basic utilities.
|
|
#
|
|
# * haveged: Provides extra entropy to /dev/random so it doesn't stall
|
|
# when generating random numbers for private keys (e.g. during
|
|
# ldns-keygen).
|
|
# * unattended-upgrades: Apt tool to install security updates automatically.
|
|
# * cron: Runs background processes periodically.
|
|
# * ntp: keeps the system time correct
|
|
# * fail2ban: scans log files for repeated failed login attempts and blocks the remote IP at the firewall
|
|
# * netcat-openbsd: `nc` command line networking tool
|
|
# * git: we install some things directly from github
|
|
# * sudo: allows privileged users to execute commands as root without being root
|
|
# * coreutils: includes `nproc` tool to report number of processors, mktemp
|
|
# * bc: allows us to do math to compute sane defaults
|
|
|
|
echo Installing system packages...
|
|
apt_install python3 python3-dev python3-pip \
|
|
netcat-openbsd wget curl git sudo coreutils bc \
|
|
haveged pollinate unzip \
|
|
unattended-upgrades cron ntp fail2ban
|
|
|
|
# ### Add PHP7 PPA
|
|
|
|
# Nextcloud requires PHP7, we will install the ppa from ubuntu php maintainer Ondřej Surý
|
|
# The PPA is located here https://launchpad.net/%7Eondrej/+archive/ubuntu/php
|
|
# Unattended upgrades are activated for the repository If it appears it's already
|
|
# installed, don't do it again so we can avoid an unnecessary call to apt-get update.
|
|
if [ ! -f /etc/apt/sources.list.d/ondrej-php-trusty.list ]; then
|
|
hide_output add-apt-repository -y ppa:ondrej/php
|
|
apt_add_repository_to_unattended_upgrades LP-PPA-ondrej-php:trusty
|
|
hide_output apt-get update
|
|
fi
|
|
|
|
# ### Suppress Upgrade Prompts
|
|
# Since Mail-in-a-Box might jump straight to 18.04 LTS, there's no need
|
|
# to be reminded about 16.04 on every login.
|
|
if [ -f /etc/update-manager/release-upgrades ]; then
|
|
tools/editconf.py /etc/update-manager/release-upgrades Prompt=never
|
|
rm -f /var/lib/ubuntu-release-upgrader/release-upgrade-available
|
|
fi
|
|
|
|
# ### Set the system timezone
|
|
#
|
|
# Some systems are missing /etc/timezone, which we cat into the configs for
|
|
# Z-Push and ownCloud, so we need to set it to something. Daily cron tasks
|
|
# like the system backup are run at a time tied to the system timezone, so
|
|
# letting the user choose will help us identify the right time to do those
|
|
# things (i.e. late at night in whatever timezone the user actually lives
|
|
# in).
|
|
#
|
|
# However, changing the timezone once it is set seems to confuse fail2ban
|
|
# and requires restarting fail2ban (done below in the fail2ban
|
|
# section) and syslog (see #328). There might be other issues, and it's
|
|
# not likely the user will want to change this, so we only ask on first
|
|
# setup.
|
|
if [ -z "$NONINTERACTIVE" ]; then
|
|
if [ ! -f /etc/timezone ] || [ ! -z $FIRST_TIME_SETUP ]; then
|
|
# If the file is missing or this is the user's first time running
|
|
# Mail-in-a-Box setup, run the interactive timezone configuration
|
|
# tool.
|
|
dpkg-reconfigure tzdata
|
|
restart_service rsyslog
|
|
fi
|
|
else
|
|
# This is a non-interactive setup so we can't ask the user.
|
|
# If /etc/timezone is missing, set it to UTC.
|
|
if [ ! -f /etc/timezone ]; then
|
|
echo "Setting timezone to UTC."
|
|
echo "Etc/UTC" > /etc/timezone
|
|
restart_service rsyslog
|
|
fi
|
|
fi
|
|
|
|
# ### Seed /dev/urandom
|
|
#
|
|
# /dev/urandom is used by various components for generating random bytes for
|
|
# encryption keys and passwords:
|
|
#
|
|
# * TLS private key (see `ssl.sh`, which calls `openssl genrsa`)
|
|
# * DNSSEC signing keys (see `dns.sh`)
|
|
# * our management server's API key (via Python's os.urandom method)
|
|
# * Roundcube's SECRET_KEY (`webmail.sh`)
|
|
# * ownCloud's administrator account password (`owncloud.sh`)
|
|
#
|
|
# Why /dev/urandom? It's the same as /dev/random, except that it doesn't wait
|
|
# for a constant new stream of entropy. In practice, we only need a little
|
|
# entropy at the start to get going. After that, we can safely pull a random
|
|
# stream from /dev/urandom and not worry about how much entropy has been
|
|
# added to the stream. (http://www.2uo.de/myths-about-urandom/) So we need
|
|
# to worry about /dev/urandom being seeded properly (which is also an issue
|
|
# for /dev/random), but after that /dev/urandom is superior to /dev/random
|
|
# because it's faster and doesn't block indefinitely to wait for hardware
|
|
# entropy. Note that `openssl genrsa` even uses `/dev/urandom`, and if it's
|
|
# good enough for generating an RSA private key, it's good enough for anything
|
|
# else we may need.
|
|
#
|
|
# Now about that seeding issue....
|
|
#
|
|
# /dev/urandom is seeded from "the uninitialized contents of the pool buffers when
|
|
# the kernel starts, the startup clock time in nanosecond resolution,...and
|
|
# entropy saved across boots to a local file" as well as the order of
|
|
# execution of concurrent accesses to /dev/urandom. (Heninger et al 2012,
|
|
# https://factorable.net/weakkeys12.conference.pdf) But when memory is zeroed,
|
|
# the system clock is reset on boot, /etc/init.d/urandom has not yet run, or
|
|
# the machine is single CPU or has no concurrent accesses to /dev/urandom prior
|
|
# to this point, /dev/urandom may not be seeded well. After this, /dev/urandom
|
|
# draws from the same entropy sources as /dev/random, but it doesn't block or
|
|
# issue any warnings if no entropy is actually available. (http://www.2uo.de/myths-about-urandom/)
|
|
# Entropy might not be readily available because this machine has no user input
|
|
# devices (common on servers!) and either no hard disk or not enough IO has
|
|
# ocurred yet --- although haveged tries to mitigate this. So there's a good chance
|
|
# that accessing /dev/urandom will not be drawing from any hardware entropy and under
|
|
# a perfect-storm circumstance where the other seeds are meaningless, /dev/urandom
|
|
# may not be seeded at all.
|
|
#
|
|
# The first thing we'll do is block until we can seed /dev/urandom with enough
|
|
# hardware entropy to get going, by drawing from /dev/random. haveged makes this
|
|
# less likely to stall for very long.
|
|
|
|
echo Initializing system random number generator...
|
|
dd if=/dev/random of=/dev/urandom bs=1 count=32 2> /dev/null
|
|
|
|
# This is supposedly sufficient. But because we're not sure if hardware entropy
|
|
# is really any good on virtualized systems, we'll also seed from Ubuntu's
|
|
# pollinate servers:
|
|
|
|
pollinate -q -r
|
|
|
|
# Between these two, we really ought to be all set.
|
|
|
|
# We need an ssh key to store backups via rsync, if it doesn't exist create one
|
|
if [ ! -f /root/.ssh/id_rsa_miab ]; then
|
|
echo 'Creating SSH key for backup…'
|
|
ssh-keygen -t rsa -b 2048 -a 100 -f /root/.ssh/id_rsa_miab -N '' -q
|
|
fi
|
|
|
|
# ### Package maintenance
|
|
#
|
|
# Allow apt to install system updates automatically every day.
|
|
|
|
cat > /etc/apt/apt.conf.d/02periodic <<EOF;
|
|
APT::Periodic::MaxAge "7";
|
|
APT::Periodic::Update-Package-Lists "1";
|
|
APT::Periodic::Unattended-Upgrade "1";
|
|
APT::Periodic::Verbose "0";
|
|
EOF
|
|
|
|
# ### Firewall
|
|
|
|
# Various virtualized environments like Docker and some VPSs don't provide #NODOC
|
|
# a kernel that supports iptables. To avoid error-like output in these cases, #NODOC
|
|
# we skip this if the user sets DISABLE_FIREWALL=1. #NODOC
|
|
if [ -z "$DISABLE_FIREWALL" ]; then
|
|
# Install `ufw` which provides a simple firewall configuration.
|
|
apt_install ufw
|
|
|
|
# Allow incoming connections to SSH.
|
|
ufw_allow ssh;
|
|
|
|
# ssh might be running on an alternate port. Use sshd -T to dump sshd's #NODOC
|
|
# settings, find the port it is supposedly running on, and open that port #NODOC
|
|
# too. #NODOC
|
|
SSH_PORT=$(sshd -T 2>/dev/null | grep "^port " | sed "s/port //") #NODOC
|
|
if [ ! -z "$SSH_PORT" ]; then
|
|
if [ "$SSH_PORT" != "22" ]; then
|
|
|
|
echo Opening alternate SSH port $SSH_PORT. #NODOC
|
|
ufw_allow $SSH_PORT #NODOC
|
|
|
|
fi
|
|
fi
|
|
|
|
ufw --force enable;
|
|
fi #NODOC
|
|
|
|
# ### Local DNS Service
|
|
|
|
# Install a local DNS server, rather than using the DNS server provided by the
|
|
# ISP's network configuration.
|
|
#
|
|
# We do this to ensure that DNS queries
|
|
# that *we* make (i.e. looking up other external domains) perform DNSSEC checks.
|
|
# We could use Google's Public DNS, but we don't want to create a dependency on
|
|
# Google per our goals of decentralization. `bind9`, as packaged for Ubuntu, has
|
|
# DNSSEC enabled by default via "dnssec-validation auto".
|
|
#
|
|
# So we'll be running `bind9` bound to 127.0.0.1 for locally-issued DNS queries
|
|
# and `nsd` bound to the public ethernet interface for remote DNS queries asking
|
|
# about our domain names. `nsd` is configured later.
|
|
#
|
|
# About the settings:
|
|
#
|
|
# * RESOLVCONF=yes will have `bind9` take over /etc/resolv.conf to tell
|
|
# local services that DNS queries are handled on localhost.
|
|
# * Adding -4 to OPTIONS will have `bind9` not listen on IPv6 addresses
|
|
# so that we're sure there's no conflict with nsd, our public domain
|
|
# name server, on IPV6.
|
|
# * The listen-on directive in named.conf.options restricts `bind9` to
|
|
# binding to the loopback interface instead of all interfaces.
|
|
apt_install bind9 resolvconf
|
|
tools/editconf.py /etc/default/bind9 \
|
|
RESOLVCONF=yes \
|
|
"OPTIONS=\"-u bind -4\""
|
|
if ! grep -q "listen-on " /etc/bind/named.conf.options; then
|
|
# Add a listen-on directive if it doesn't exist inside the options block.
|
|
sed -i "s/^}/\n\tlisten-on { 127.0.0.1; };\n}/" /etc/bind/named.conf.options
|
|
fi
|
|
if [ -f /etc/resolvconf/resolv.conf.d/original ]; then
|
|
echo "Archiving old resolv.conf (was /etc/resolvconf/resolv.conf.d/original, now /etc/resolvconf/resolv.conf.original)." #NODOC
|
|
mv /etc/resolvconf/resolv.conf.d/original /etc/resolvconf/resolv.conf.original #NODOC
|
|
fi
|
|
|
|
# Restart the DNS services.
|
|
|
|
restart_service bind9
|
|
restart_service resolvconf
|
|
|
|
# ### Fail2Ban Service
|
|
|
|
# Configure the Fail2Ban installation to prevent dumb bruce-force attacks against dovecot, postfix, ssh, etc.
|
|
rm -f /etc/fail2ban/jail.local # we used to use this file but don't anymore
|
|
cat conf/fail2ban/jails.conf \
|
|
| sed "s/PUBLIC_IP/$PUBLIC_IP/g" \
|
|
| sed "s#STORAGE_ROOT#$STORAGE_ROOT#" \
|
|
> /etc/fail2ban/jail.d/mailinabox.conf
|
|
cp -f conf/fail2ban/filter.d/* /etc/fail2ban/filter.d/
|
|
|
|
# On first installation, the log files that the jails look at don't all exist.
|
|
# e.g., The roundcube error log isn't normally created until someone logs into
|
|
# Roundcube for the first time. This causes fail2ban to fail to start. Later
|
|
# scripts will ensure the files exist and then fail2ban is given another
|
|
# restart at the very end of setup.
|
|
restart_service fail2ban
|