Script to index local batch for evaluation
This commit is contained in:
parent
480be85cfd
commit
b1eea2457f
3 changed files with 82 additions and 20 deletions
51
analyse/index_local.py
Normal file
51
analyse/index_local.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
"""
|
||||
Index batches stored locally on the filesystem for the purpose of evaluation.
|
||||
"""
|
||||
import glob
|
||||
import gzip
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import spacy
|
||||
|
||||
from mwmbl.crawler.batch import HashedBatch
|
||||
from mwmbl.crawler.urls import URLDatabase
|
||||
from mwmbl.database import Database
|
||||
from mwmbl.indexer.index_batches import index_batches
|
||||
from mwmbl.tinysearchengine.indexer import TinyIndex, Document
|
||||
|
||||
LOCAL_BATCHES_PATH = f'{os.environ["HOME"]}/data/mwmbl/file/**/*.json.gz'
|
||||
NUM_BATCHES = 10000
|
||||
EVALUATE_INDEX_PATH = f'{os.environ["HOME"]}/data/mwmbl/evaluate-index.tinysearch'
|
||||
NUM_PAGES = 1_024_000
|
||||
PAGE_SIZE = 4096
|
||||
|
||||
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
|
||||
|
||||
def get_batches():
|
||||
for path in sorted(glob.glob(LOCAL_BATCHES_PATH, recursive=True))[:NUM_BATCHES]:
|
||||
data = json.load(gzip.open(path))
|
||||
yield HashedBatch.parse_obj(data)
|
||||
|
||||
|
||||
def run():
|
||||
try:
|
||||
os.remove(EVALUATE_INDEX_PATH)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
TinyIndex.create(item_factory=Document, index_path=EVALUATE_INDEX_PATH, num_pages=NUM_PAGES, page_size=PAGE_SIZE)
|
||||
|
||||
batches = get_batches()
|
||||
with Database() as db:
|
||||
nlp = spacy.load("en_core_web_sm")
|
||||
url_db = URLDatabase(db.connection)
|
||||
index_batches(batches, EVALUATE_INDEX_PATH, nlp, url_db)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run()
|
|
@ -1,8 +1,10 @@
|
|||
import logging
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import spacy
|
||||
|
||||
from analyse.index_local import EVALUATE_INDEX_PATH
|
||||
from mwmbl.indexer.index import tokenize_document
|
||||
from mwmbl.indexer.paths import INDEX_PATH
|
||||
from mwmbl.tinysearchengine.indexer import TinyIndex, Document
|
||||
|
@ -35,16 +37,24 @@ def get_items():
|
|||
print("Items", item)
|
||||
|
||||
|
||||
def run():
|
||||
with TinyIndex(Document, INDEX_PATH) as tiny_index:
|
||||
for i in range(100000):
|
||||
def run(index_path):
|
||||
with TinyIndex(Document, index_path) as tiny_index:
|
||||
sizes = {}
|
||||
for i in range(tiny_index.num_pages):
|
||||
page = tiny_index.get_page(i)
|
||||
for item in page:
|
||||
if ' search' in item.title:
|
||||
print("Page", i, item)
|
||||
if page:
|
||||
sizes[i] = len(page)
|
||||
if len(page) > 50:
|
||||
print("Page", len(page), page)
|
||||
# for item in page:
|
||||
# if ' search' in item.title:
|
||||
# print("Page", i, item)
|
||||
print("Max", max(sizes.values()))
|
||||
print("Top", sorted(sizes.values())[-100:])
|
||||
print("Mean", np.mean(list(sizes.values())))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# store()
|
||||
# run()
|
||||
get_items()
|
||||
run(EVALUATE_INDEX_PATH)
|
||||
# get_items()
|
||||
|
|
|
@ -8,6 +8,7 @@ from typing import Iterable
|
|||
from urllib.parse import urlparse
|
||||
|
||||
import spacy
|
||||
from spacy import Language
|
||||
|
||||
from mwmbl.crawler.batch import HashedBatch, Item
|
||||
from mwmbl.crawler.urls import URLDatabase, URLStatus, FoundURL
|
||||
|
@ -49,23 +50,23 @@ def run(batch_cache: BatchCache, index_path: str):
|
|||
|
||||
record_urls_in_database(batch_data.values())
|
||||
|
||||
document_tuples = list(get_documents_from_batches(batch_data.values()))
|
||||
urls = [url for title, url, extract in document_tuples]
|
||||
|
||||
logger.info(f"Got {len(urls)} document tuples")
|
||||
|
||||
url_db = URLDatabase(db.connection)
|
||||
url_scores = url_db.get_url_scores(urls)
|
||||
|
||||
logger.info(f"Got {len(url_scores)} scores")
|
||||
documents = [Document(title, url, extract, url_scores.get(url, 1.0)) for title, url, extract in document_tuples]
|
||||
|
||||
page_documents = preprocess_documents(documents, index_path, nlp)
|
||||
index_pages(index_path, page_documents)
|
||||
index_batches(batch_data.values(), index_path, nlp, url_db)
|
||||
logger.info("Indexed pages")
|
||||
index_db.update_batch_status([batch.url for batch in batches], BatchStatus.INDEXED)
|
||||
|
||||
|
||||
def index_batches(batch_data: Iterable[HashedBatch], index_path: str, nlp: Language, url_db: URLDatabase):
|
||||
document_tuples = list(get_documents_from_batches(batch_data))
|
||||
urls = [url for title, url, extract in document_tuples]
|
||||
logger.info(f"Got {len(urls)} document tuples")
|
||||
url_scores = url_db.get_url_scores(urls)
|
||||
logger.info(f"Got {len(url_scores)} scores")
|
||||
documents = [Document(title, url, extract, url_scores.get(url, 1.0)) for title, url, extract in document_tuples]
|
||||
page_documents = preprocess_documents(documents, index_path, nlp)
|
||||
index_pages(index_path, page_documents)
|
||||
|
||||
|
||||
def index_pages(index_path, page_documents):
|
||||
with TinyIndex(Document, index_path, 'w') as indexer:
|
||||
for page, documents in page_documents.items():
|
||||
|
|
Loading…
Reference in a new issue