Merge pull request #127 from mwmbl/add-term-info-to-index
Add term info to index
This commit is contained in:
commit
36df016445
12 changed files with 125 additions and 141 deletions
51
analyse/add_term_info.py
Normal file
51
analyse/add_term_info.py
Normal file
|
@ -0,0 +1,51 @@
|
||||||
|
"""
|
||||||
|
Investigate adding term information to the database.
|
||||||
|
|
||||||
|
How much extra space will it take?
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from random import Random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import sem
|
||||||
|
|
||||||
|
from mwmbl.tinysearchengine.indexer import TinyIndex, Document, _trim_items_to_page, astuple
|
||||||
|
|
||||||
|
from zstandard import ZstdCompressor
|
||||||
|
|
||||||
|
from mwmbl.utils import add_term_info
|
||||||
|
|
||||||
|
random = Random(1)
|
||||||
|
|
||||||
|
INDEX_PATH = Path(__file__).parent.parent / "devdata" / "index-v2.tinysearch"
|
||||||
|
|
||||||
|
|
||||||
|
def run():
|
||||||
|
compressor = ZstdCompressor()
|
||||||
|
with TinyIndex(Document, INDEX_PATH) as index:
|
||||||
|
# Get some random integers between 0 and index.num_pages:
|
||||||
|
pages = random.sample(range(index.num_pages), 10000)
|
||||||
|
|
||||||
|
old_sizes = []
|
||||||
|
new_sizes = []
|
||||||
|
|
||||||
|
for i in pages:
|
||||||
|
page = index.get_page(i)
|
||||||
|
term_documents = []
|
||||||
|
for document in page:
|
||||||
|
term_document = add_term_info(document, index, i)
|
||||||
|
term_documents.append(term_document)
|
||||||
|
|
||||||
|
value_tuples = [astuple(value) for value in term_documents]
|
||||||
|
num_fitting, compressed = _trim_items_to_page(compressor, index.page_size, value_tuples)
|
||||||
|
|
||||||
|
new_sizes.append(num_fitting)
|
||||||
|
old_sizes.append(len(page))
|
||||||
|
|
||||||
|
print("Old sizes mean", np.mean(old_sizes), sem(old_sizes))
|
||||||
|
print("New sizes mean", np.mean(new_sizes), sem(new_sizes))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
run()
|
|
@ -1,57 +0,0 @@
|
||||||
"""
|
|
||||||
Index batches stored locally on the filesystem for the purpose of evaluation.
|
|
||||||
"""
|
|
||||||
import glob
|
|
||||||
import gzip
|
|
||||||
import json
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
from datetime import datetime
|
|
||||||
|
|
||||||
import spacy
|
|
||||||
|
|
||||||
from mwmbl.crawler import HashedBatch
|
|
||||||
from mwmbl.crawler.urls import URLDatabase
|
|
||||||
from mwmbl.database import Database
|
|
||||||
from mwmbl.indexer import index_batches
|
|
||||||
from mwmbl.tinysearchengine import TinyIndex, Document
|
|
||||||
|
|
||||||
LOCAL_BATCHES_PATH = f'{os.environ["HOME"]}/data/mwmbl/file/**/*.json.gz'
|
|
||||||
NUM_BATCHES = 10000
|
|
||||||
EVALUATE_INDEX_PATH = f'{os.environ["HOME"]}/data/mwmbl/evaluate-index.tinysearch'
|
|
||||||
NUM_PAGES = 1_024_000
|
|
||||||
PAGE_SIZE = 4096
|
|
||||||
|
|
||||||
|
|
||||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
|
||||||
|
|
||||||
|
|
||||||
def get_batches():
|
|
||||||
for path in sorted(glob.glob(LOCAL_BATCHES_PATH, recursive=True))[:NUM_BATCHES]:
|
|
||||||
data = json.load(gzip.open(path))
|
|
||||||
yield HashedBatch.parse_obj(data)
|
|
||||||
|
|
||||||
|
|
||||||
def run():
|
|
||||||
try:
|
|
||||||
os.remove(EVALUATE_INDEX_PATH)
|
|
||||||
except FileNotFoundError:
|
|
||||||
pass
|
|
||||||
TinyIndex.create(item_factory=Document, index_path=EVALUATE_INDEX_PATH, num_pages=NUM_PAGES, page_size=PAGE_SIZE)
|
|
||||||
|
|
||||||
batches = get_batches()
|
|
||||||
|
|
||||||
start = datetime.now()
|
|
||||||
with Database() as db:
|
|
||||||
nlp = spacy.load("en_core_web_sm")
|
|
||||||
url_db = URLDatabase(db.connection)
|
|
||||||
index_batches(batches, EVALUATE_INDEX_PATH, nlp, url_db)
|
|
||||||
end = datetime.now()
|
|
||||||
|
|
||||||
total_time = (end - start).total_seconds()
|
|
||||||
print("total_seconds:", total_time)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
run()
|
|
|
@ -1,60 +0,0 @@
|
||||||
import logging
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import spacy
|
|
||||||
|
|
||||||
from analyse.index_local import EVALUATE_INDEX_PATH
|
|
||||||
from mwmbl.indexer import tokenize_document
|
|
||||||
from mwmbl.indexer import INDEX_PATH
|
|
||||||
from mwmbl.tinysearchengine import TinyIndex, Document
|
|
||||||
|
|
||||||
|
|
||||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
|
||||||
nlp = spacy.load("en_core_web_sm")
|
|
||||||
|
|
||||||
|
|
||||||
def store():
|
|
||||||
document = Document(
|
|
||||||
title='A nation in search of the new black | Theatre | The Guardian',
|
|
||||||
url='https://www.theguardian.com/stage/2007/nov/18/theatre',
|
|
||||||
extract="Topic-stuffed and talk-filled, Kwame Kwei-Armah's new play proves that issue-driven drama is (despite reports of its death) still being written and staged…",
|
|
||||||
score=1.0
|
|
||||||
)
|
|
||||||
with TinyIndex(Document, INDEX_PATH, 'w') as tiny_index:
|
|
||||||
tokenized = tokenize_document(document.url, document.title, document.extract, 1, nlp)
|
|
||||||
print("Tokenized", tokenized)
|
|
||||||
# for token in tokenized.tokens:
|
|
||||||
#
|
|
||||||
# tiny_index.index(token, document)
|
|
||||||
|
|
||||||
|
|
||||||
def get_items():
|
|
||||||
with TinyIndex(Document, INDEX_PATH) as tiny_index:
|
|
||||||
items = tiny_index.retrieve('wikipedia')
|
|
||||||
if items:
|
|
||||||
for item in items:
|
|
||||||
print("Items", item)
|
|
||||||
|
|
||||||
|
|
||||||
def run(index_path):
|
|
||||||
with TinyIndex(Document, index_path) as tiny_index:
|
|
||||||
sizes = {}
|
|
||||||
for i in range(tiny_index.num_pages):
|
|
||||||
page = tiny_index.get_page(i)
|
|
||||||
if page:
|
|
||||||
sizes[i] = len(page)
|
|
||||||
if len(page) > 50:
|
|
||||||
print("Page", len(page), page)
|
|
||||||
# for item in page:
|
|
||||||
# if ' search' in item.title:
|
|
||||||
# print("Page", i, item)
|
|
||||||
print("Max", max(sizes.values()))
|
|
||||||
print("Top", sorted(sizes.values())[-100:])
|
|
||||||
print("Mean", np.mean(list(sizes.values())))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# store()
|
|
||||||
run(EVALUATE_INDEX_PATH)
|
|
||||||
# get_items()
|
|
Binary file not shown.
|
@ -6,6 +6,10 @@ from pathlib import Path
|
||||||
from django.apps import AppConfig
|
from django.apps import AppConfig
|
||||||
from django.conf import settings
|
from django.conf import settings
|
||||||
|
|
||||||
|
from mwmbl.crawler.urls import URLDatabase
|
||||||
|
from mwmbl.database import Database
|
||||||
|
from mwmbl.indexer.indexdb import IndexDatabase
|
||||||
|
|
||||||
|
|
||||||
class MwmblConfig(AppConfig):
|
class MwmblConfig(AppConfig):
|
||||||
name = "mwmbl"
|
name = "mwmbl"
|
||||||
|
@ -31,6 +35,12 @@ class MwmblConfig(AppConfig):
|
||||||
TinyIndex.create(item_factory=Document, index_path=index_path, num_pages=settings.NUM_PAGES,
|
TinyIndex.create(item_factory=Document, index_path=index_path, num_pages=settings.NUM_PAGES,
|
||||||
page_size=PAGE_SIZE)
|
page_size=PAGE_SIZE)
|
||||||
|
|
||||||
|
with Database() as db:
|
||||||
|
url_db = URLDatabase(db.connection)
|
||||||
|
url_db.create_tables()
|
||||||
|
index_db = IndexDatabase(db.connection)
|
||||||
|
index_db.create_tables()
|
||||||
|
|
||||||
if settings.RUN_BACKGROUND_PROCESSES:
|
if settings.RUN_BACKGROUND_PROCESSES:
|
||||||
new_item_queue = Queue()
|
new_item_queue = Queue()
|
||||||
Process(target=background.run, args=(settings.DATA_PATH,)).start()
|
Process(target=background.run, args=(settings.DATA_PATH,)).start()
|
||||||
|
|
|
@ -1,7 +1,9 @@
|
||||||
"""
|
"""
|
||||||
Script that updates data in a background process.
|
Script that updates data in a background process.
|
||||||
"""
|
"""
|
||||||
from logging import getLogger
|
import logging
|
||||||
|
import sys
|
||||||
|
from logging import getLogger, basicConfig
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from time import sleep
|
from time import sleep
|
||||||
|
|
||||||
|
@ -11,6 +13,8 @@ from mwmbl.indexer import index_batches, historical
|
||||||
from mwmbl.indexer.batch_cache import BatchCache
|
from mwmbl.indexer.batch_cache import BatchCache
|
||||||
from mwmbl.indexer.paths import BATCH_DIR_NAME, INDEX_NAME
|
from mwmbl.indexer.paths import BATCH_DIR_NAME, INDEX_NAME
|
||||||
|
|
||||||
|
|
||||||
|
basicConfig(stream=sys.stdout, level=logging.INFO)
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -49,7 +49,7 @@ def prepare_url_for_tokenizing(url: str):
|
||||||
def get_pages(nlp, titles_urls_and_extracts, link_counts) -> Iterable[TokenizedDocument]:
|
def get_pages(nlp, titles_urls_and_extracts, link_counts) -> Iterable[TokenizedDocument]:
|
||||||
for i, (title_cleaned, url, extract) in enumerate(titles_urls_and_extracts):
|
for i, (title_cleaned, url, extract) in enumerate(titles_urls_and_extracts):
|
||||||
score = link_counts.get(url, DEFAULT_SCORE)
|
score = link_counts.get(url, DEFAULT_SCORE)
|
||||||
yield tokenize_document(url, title_cleaned, extract, score, nlp)
|
yield tokenize_document(url, title_cleaned, extract, score)
|
||||||
|
|
||||||
if i % 1000 == 0:
|
if i % 1000 == 0:
|
||||||
print("Processed", i)
|
print("Processed", i)
|
||||||
|
@ -61,7 +61,7 @@ def get_index_tokens(tokens):
|
||||||
return set(first_tokens + bigrams)
|
return set(first_tokens + bigrams)
|
||||||
|
|
||||||
|
|
||||||
def tokenize_document(url, title_cleaned, extract, score, nlp):
|
def tokenize_document(url, title_cleaned, extract, score):
|
||||||
title_tokens = tokenize(title_cleaned)
|
title_tokens = tokenize(title_cleaned)
|
||||||
prepared_url = prepare_url_for_tokenizing(unquote(url))
|
prepared_url = prepare_url_for_tokenizing(unquote(url))
|
||||||
url_tokens = tokenize(prepared_url)
|
url_tokens = tokenize(prepared_url)
|
||||||
|
|
|
@ -16,6 +16,7 @@ from mwmbl.indexer.batch_cache import BatchCache
|
||||||
from mwmbl.indexer.index import tokenize_document
|
from mwmbl.indexer.index import tokenize_document
|
||||||
from mwmbl.indexer.indexdb import BatchStatus
|
from mwmbl.indexer.indexdb import BatchStatus
|
||||||
from mwmbl.tinysearchengine.indexer import Document, TinyIndex
|
from mwmbl.tinysearchengine.indexer import Document, TinyIndex
|
||||||
|
from mwmbl.utils import add_term_info, add_term_infos
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
@ -31,22 +32,20 @@ def run(batch_cache: BatchCache, index_path: str):
|
||||||
|
|
||||||
def process(batches: Collection[HashedBatch]):
|
def process(batches: Collection[HashedBatch]):
|
||||||
with Database() as db:
|
with Database() as db:
|
||||||
nlp = spacy.load("en_core_web_sm")
|
|
||||||
url_db = URLDatabase(db.connection)
|
url_db = URLDatabase(db.connection)
|
||||||
index_batches(batches, index_path, nlp, url_db)
|
index_batches(batches, index_path, url_db)
|
||||||
logger.info("Indexed pages")
|
logger.info("Indexed pages")
|
||||||
|
|
||||||
process_batch.run(batch_cache, BatchStatus.URLS_UPDATED, BatchStatus.INDEXED, process)
|
process_batch.run(batch_cache, BatchStatus.URLS_UPDATED, BatchStatus.INDEXED, process)
|
||||||
|
|
||||||
|
|
||||||
def index_batches(batch_data: Collection[HashedBatch], index_path: str, nlp: Language, url_db: URLDatabase):
|
def index_batches(batch_data: Collection[HashedBatch], index_path: str, url_db: URLDatabase):
|
||||||
document_tuples = list(get_documents_from_batches(batch_data))
|
document_tuples = list(get_documents_from_batches(batch_data))
|
||||||
urls = [url for title, url, extract in document_tuples]
|
urls = [url for title, url, extract in document_tuples]
|
||||||
logger.info(f"Got {len(urls)} document tuples")
|
|
||||||
url_scores = url_db.get_url_scores(urls)
|
url_scores = url_db.get_url_scores(urls)
|
||||||
logger.info(f"Got {len(url_scores)} scores")
|
logger.info(f"Indexing {len(urls)} document tuples and {len(url_scores)} URL scores")
|
||||||
documents = [Document(title, url, extract, url_scores.get(url, 1.0)) for title, url, extract in document_tuples]
|
documents = [Document(title, url, extract, url_scores.get(url, 1.0)) for title, url, extract in document_tuples]
|
||||||
page_documents = preprocess_documents(documents, index_path, nlp)
|
page_documents = preprocess_documents(documents, index_path)
|
||||||
index_pages(index_path, page_documents)
|
index_pages(index_path, page_documents)
|
||||||
|
|
||||||
|
|
||||||
|
@ -58,24 +57,27 @@ def index_pages(index_path, page_documents):
|
||||||
seen_urls = set()
|
seen_urls = set()
|
||||||
seen_titles = set()
|
seen_titles = set()
|
||||||
sorted_documents = sorted(documents + existing_documents, key=lambda x: x.score, reverse=True)
|
sorted_documents = sorted(documents + existing_documents, key=lambda x: x.score, reverse=True)
|
||||||
for document in sorted_documents:
|
# TODO: for now we add the term here, until all the documents in the index have terms
|
||||||
|
sorted_documents_with_terms = add_term_infos(sorted_documents, indexer, page)
|
||||||
|
for document in sorted_documents_with_terms:
|
||||||
if document.title in seen_titles or document.url in seen_urls:
|
if document.title in seen_titles or document.url in seen_urls:
|
||||||
continue
|
continue
|
||||||
new_documents.append(document)
|
new_documents.append(document)
|
||||||
seen_urls.add(document.url)
|
seen_urls.add(document.url)
|
||||||
seen_titles.add(document.title)
|
seen_titles.add(document.title)
|
||||||
|
logger.info(f"Storing {len(new_documents)} documents for page {page}, originally {len(existing_documents)}")
|
||||||
indexer.store_in_page(page, new_documents)
|
indexer.store_in_page(page, new_documents)
|
||||||
|
|
||||||
|
|
||||||
def preprocess_documents(documents, index_path, nlp):
|
def preprocess_documents(documents, index_path):
|
||||||
page_documents = defaultdict(list)
|
page_documents = defaultdict(list)
|
||||||
with TinyIndex(Document, index_path, 'w') as indexer:
|
with TinyIndex(Document, index_path, 'w') as indexer:
|
||||||
for document in documents:
|
for document in documents:
|
||||||
tokenized = tokenize_document(document.url, document.title, document.extract, document.score, nlp)
|
tokenized = tokenize_document(document.url, document.title, document.extract, document.score)
|
||||||
# logger.debug(f"Tokenized: {tokenized}")
|
for token in tokenized.tokens:
|
||||||
page_indexes = [indexer.get_key_page_index(token) for token in tokenized.tokens]
|
page = indexer.get_key_page_index(token)
|
||||||
for page in page_indexes:
|
term_document = Document(document.title, document.url, document.extract, document.score, token)
|
||||||
page_documents[page].append(document)
|
page_documents[page].append(term_document)
|
||||||
print(f"Preprocessed for {len(page_documents)} pages")
|
print(f"Preprocessed for {len(page_documents)} pages")
|
||||||
return page_documents
|
return page_documents
|
||||||
|
|
||||||
|
|
|
@ -86,7 +86,7 @@ def record_urls_in_database(batches: Collection[HashedBatch], new_item_queue: Qu
|
||||||
def process_link(user_id_hash, crawled_page_domain, link, unknown_domain_multiplier, timestamp, url_scores, url_timestamps, url_users, is_extra: bool, blacklist_domains):
|
def process_link(user_id_hash, crawled_page_domain, link, unknown_domain_multiplier, timestamp, url_scores, url_timestamps, url_users, is_extra: bool, blacklist_domains):
|
||||||
parsed_link = urlparse(link)
|
parsed_link = urlparse(link)
|
||||||
if is_domain_blacklisted(parsed_link.netloc, blacklist_domains):
|
if is_domain_blacklisted(parsed_link.netloc, blacklist_domains):
|
||||||
logger.info(f"Excluding link for blacklisted domain: {parsed_link}")
|
logger.debug(f"Excluding link for blacklisted domain: {parsed_link}")
|
||||||
return
|
return
|
||||||
|
|
||||||
extra_multiplier = EXTRA_LINK_MULTIPLIER if is_extra else 1.0
|
extra_multiplier = EXTRA_LINK_MULTIPLIER if is_extra else 1.0
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
from logging import getLogger
|
||||||
from typing import Any
|
from typing import Any
|
||||||
from urllib.parse import parse_qs
|
from urllib.parse import parse_qs
|
||||||
|
|
||||||
|
@ -9,11 +10,15 @@ from mwmbl.platform.data import CurateBegin, CurateMove, CurateDelete, CurateAdd
|
||||||
make_curation_type
|
make_curation_type
|
||||||
from mwmbl.tinysearchengine.indexer import TinyIndex, Document
|
from mwmbl.tinysearchengine.indexer import TinyIndex, Document
|
||||||
from mwmbl.tokenizer import tokenize
|
from mwmbl.tokenizer import tokenize
|
||||||
|
from mwmbl.utils import add_term_info, add_term_infos
|
||||||
|
|
||||||
RESULT_URL = "https://mwmbl.org/?q="
|
RESULT_URL = "https://mwmbl.org/?q="
|
||||||
MAX_CURATED_SCORE = 1_111_111.0
|
MAX_CURATED_SCORE = 1_111_111.0
|
||||||
|
|
||||||
|
|
||||||
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def create_router(index_path: str) -> Router:
|
def create_router(index_path: str) -> Router:
|
||||||
router = Router(tags=["user"])
|
router = Router(tags=["user"])
|
||||||
|
|
||||||
|
@ -58,20 +63,24 @@ def create_router(index_path: str) -> Router:
|
||||||
raise ValueError(f"Should be one query value in the URL: {curation.url}")
|
raise ValueError(f"Should be one query value in the URL: {curation.url}")
|
||||||
|
|
||||||
query = queries[0]
|
query = queries[0]
|
||||||
print("Query", query)
|
|
||||||
tokens = tokenize(query)
|
tokens = tokenize(query)
|
||||||
print("Tokens", tokens)
|
|
||||||
term = " ".join(tokens)
|
term = " ".join(tokens)
|
||||||
print("Key", term)
|
|
||||||
|
|
||||||
documents = [
|
documents = [
|
||||||
Document(result.title, result.url, result.extract, MAX_CURATED_SCORE - i, term, result.curated)
|
Document(result.title, result.url, result.extract, MAX_CURATED_SCORE - i, term, result.curated)
|
||||||
for i, result in enumerate(curation.results)
|
for i, result in enumerate(curation.results)
|
||||||
]
|
]
|
||||||
|
|
||||||
page_index = indexer.get_key_page_index(term)
|
page_index = indexer.get_key_page_index(term)
|
||||||
print("Page index", page_index)
|
existing_documents_no_terms = indexer.get_page(page_index)
|
||||||
print("Storing documents", documents)
|
existing_documents = add_term_infos(existing_documents_no_terms, indexer, page_index)
|
||||||
indexer.store_in_page(page_index, documents)
|
other_documents = [doc for doc in existing_documents if doc.term != term]
|
||||||
|
logger.info(f"Found {len(other_documents)} other documents for term {term} at page {page_index} "
|
||||||
|
f"with terms { {doc.term for doc in other_documents} }")
|
||||||
|
|
||||||
|
all_documents = documents + other_documents
|
||||||
|
logger.info(f"Storing {len(all_documents)} documents at page {page_index}")
|
||||||
|
indexer.store_in_page(page_index, all_documents)
|
||||||
|
|
||||||
return {"curation": "ok"}
|
return {"curation": "ok"}
|
||||||
|
|
||||||
|
|
|
@ -79,6 +79,7 @@ class TinyIndexMetadata:
|
||||||
values = json.loads(data[constant_length:].decode('utf8'))
|
values = json.loads(data[constant_length:].decode('utf8'))
|
||||||
return TinyIndexMetadata(**values)
|
return TinyIndexMetadata(**values)
|
||||||
|
|
||||||
|
|
||||||
# Find the optimal amount of data that fits onto a page
|
# Find the optimal amount of data that fits onto a page
|
||||||
# We do this by leveraging binary search to quickly find the index where:
|
# We do this by leveraging binary search to quickly find the index where:
|
||||||
# - index+1 cannot fit onto a page
|
# - index+1 cannot fit onto a page
|
||||||
|
@ -106,10 +107,12 @@ def _binary_search_fitting_size(compressor: ZstdCompressor, page_size: int, item
|
||||||
# No better match, use our index
|
# No better match, use our index
|
||||||
return mid, compressed_data
|
return mid, compressed_data
|
||||||
|
|
||||||
|
|
||||||
def _trim_items_to_page(compressor: ZstdCompressor, page_size: int, items:list[T]):
|
def _trim_items_to_page(compressor: ZstdCompressor, page_size: int, items:list[T]):
|
||||||
# Find max number of items that fit on a page
|
# Find max number of items that fit on a page
|
||||||
return _binary_search_fitting_size(compressor, page_size, items, 0, len(items))
|
return _binary_search_fitting_size(compressor, page_size, items, 0, len(items))
|
||||||
|
|
||||||
|
|
||||||
def _get_page_data(compressor: ZstdCompressor, page_size: int, items: list[T]):
|
def _get_page_data(compressor: ZstdCompressor, page_size: int, items: list[T]):
|
||||||
num_fitting, serialised_data = _trim_items_to_page(compressor, page_size, items)
|
num_fitting, serialised_data = _trim_items_to_page(compressor, page_size, items)
|
||||||
|
|
||||||
|
@ -186,7 +189,6 @@ class TinyIndex(Generic[T]):
|
||||||
except ZstdError:
|
except ZstdError:
|
||||||
logger.exception(f"Error decompressing page data, content: {page_data}")
|
logger.exception(f"Error decompressing page data, content: {page_data}")
|
||||||
return []
|
return []
|
||||||
# logger.debug(f"Decompressed data: {decompressed_data}")
|
|
||||||
return json.loads(decompressed_data.decode('utf8'))
|
return json.loads(decompressed_data.decode('utf8'))
|
||||||
|
|
||||||
def store_in_page(self, page_index: int, values: list[T]):
|
def store_in_page(self, page_index: int, values: list[T]):
|
||||||
|
|
|
@ -1,5 +1,8 @@
|
||||||
import re
|
import re
|
||||||
|
|
||||||
|
from mwmbl.indexer.index import tokenize_document
|
||||||
|
from mwmbl.tinysearchengine.indexer import Document, TinyIndex
|
||||||
|
|
||||||
DOMAIN_REGEX = re.compile(r".*://([^/]*)")
|
DOMAIN_REGEX = re.compile(r".*://([^/]*)")
|
||||||
|
|
||||||
|
|
||||||
|
@ -17,3 +20,23 @@ def get_domain(url):
|
||||||
if results is None or len(results.groups()) == 0:
|
if results is None or len(results.groups()) == 0:
|
||||||
raise ValueError(f"Unable to parse domain from URL {url}")
|
raise ValueError(f"Unable to parse domain from URL {url}")
|
||||||
return results.group(1)
|
return results.group(1)
|
||||||
|
|
||||||
|
|
||||||
|
def add_term_info(document: Document, index: TinyIndex, page_index: int):
|
||||||
|
tokenized = tokenize_document(document.url, document.title, document.extract, document.score)
|
||||||
|
for token in tokenized.tokens:
|
||||||
|
token_page_index = index.get_key_page_index(token)
|
||||||
|
if token_page_index == page_index:
|
||||||
|
return Document(document.title, document.url, document.extract, document.score, token)
|
||||||
|
raise ValueError("Could not find token in page index")
|
||||||
|
|
||||||
|
|
||||||
|
def add_term_infos(documents: list[Document], index: TinyIndex, page_index: int):
|
||||||
|
for document in documents:
|
||||||
|
if document.term is not None:
|
||||||
|
yield document
|
||||||
|
continue
|
||||||
|
try:
|
||||||
|
yield add_term_info(document, index, page_index)
|
||||||
|
except ValueError:
|
||||||
|
continue
|
||||||
|
|
Loading…
Reference in a new issue