moby/daemon/monitor.go
Vishnu Kannan f96e04ffc7 This patch adds ability in docker to detect out of memory conditions in containers.
Since the containers can handle the out of memory kernel kills gracefully, docker
will only provide out of memory information as an additional metadata as part of
container status.
Docker-DCO-1.1-Signed-off-by: Vishnu Kannan <vishnuk@google.com> (github: vishh)
2014-11-08 00:14:08 +00:00

312 lines
9 KiB
Go

package daemon
import (
"io"
"os/exec"
"sync"
"time"
log "github.com/Sirupsen/logrus"
"github.com/docker/docker/daemon/execdriver"
"github.com/docker/docker/runconfig"
)
const defaultTimeIncrement = 100
// containerMonitor monitors the execution of a container's main process.
// If a restart policy is specified for the cotnainer the monitor will ensure that the
// process is restarted based on the rules of the policy. When the container is finally stopped
// the monitor will reset and cleanup any of the container resources such as networking allocations
// and the rootfs
type containerMonitor struct {
mux sync.Mutex
// container is the container being monitored
container *Container
// restartPolicy is the current policy being applied to the container monitor
restartPolicy runconfig.RestartPolicy
// failureCount is the number of times the container has failed to
// start in a row
failureCount int
// shouldStop signals the monitor that the next time the container exits it is
// either because docker or the user asked for the container to be stopped
shouldStop bool
// startSignal is a channel that is closes after the container initially starts
startSignal chan struct{}
// stopChan is used to signal to the monitor whenever there is a wait for the
// next restart so that the timeIncrement is not honored and the user is not
// left waiting for nothing to happen during this time
stopChan chan struct{}
// timeIncrement is the amount of time to wait between restarts
// this is in milliseconds
timeIncrement int
// lastStartTime is the time which the monitor last exec'd the container's process
lastStartTime time.Time
}
// newContainerMonitor returns an initialized containerMonitor for the provided container
// honoring the provided restart policy
func newContainerMonitor(container *Container, policy runconfig.RestartPolicy) *containerMonitor {
return &containerMonitor{
container: container,
restartPolicy: policy,
timeIncrement: defaultTimeIncrement,
stopChan: make(chan struct{}),
startSignal: make(chan struct{}),
}
}
// Stop signals to the container monitor that it should stop monitoring the container
// for exits the next time the process dies
func (m *containerMonitor) ExitOnNext() {
m.mux.Lock()
// we need to protect having a double close of the channel when stop is called
// twice or else we will get a panic
if !m.shouldStop {
m.shouldStop = true
close(m.stopChan)
}
m.mux.Unlock()
}
// Close closes the container's resources such as networking allocations and
// unmounts the contatiner's root filesystem
func (m *containerMonitor) Close() error {
// Cleanup networking and mounts
m.container.cleanup()
// FIXME: here is race condition between two RUN instructions in Dockerfile
// because they share same runconfig and change image. Must be fixed
// in builder/builder.go
if err := m.container.toDisk(); err != nil {
log.Errorf("Error dumping container %s state to disk: %s", m.container.ID, err)
return err
}
return nil
}
// Start starts the containers process and monitors it according to the restart policy
func (m *containerMonitor) Start() error {
var (
err error
exitStatus *execdriver.ExitStatus
// this variable indicates where we in execution flow:
// before Run or after
afterRun bool
)
// ensure that when the monitor finally exits we release the networking and unmount the rootfs
defer func() {
if afterRun {
m.container.Lock()
m.container.setStopped(exitStatus)
defer m.container.Unlock()
}
m.Close()
}()
// reset the restart count
m.container.RestartCount = -1
for {
m.container.RestartCount++
if err := m.container.startLoggingToDisk(); err != nil {
m.resetContainer(false)
return err
}
pipes := execdriver.NewPipes(m.container.stdin, m.container.stdout, m.container.stderr, m.container.Config.OpenStdin)
m.container.LogEvent("start")
m.lastStartTime = time.Now()
if exitStatus, err = m.container.daemon.Run(m.container, pipes, m.callback); err != nil {
// if we receive an internal error from the initial start of a container then lets
// return it instead of entering the restart loop
if m.container.RestartCount == 0 {
m.container.ExitCode = exitStatus
m.resetContainer(false)
return err
}
log.Errorf("Error running container: %s", err)
}
// here container.Lock is already lost
afterRun = true
m.resetMonitor(err == nil && exitStatus.ExitCode == 0)
if m.shouldRestart(exitStatus.ExitCode) {
m.container.SetRestarting(exitStatus)
m.container.LogEvent("die")
m.resetContainer(true)
// sleep with a small time increment between each restart to help avoid issues cased by quickly
// restarting the container because of some types of errors ( networking cut out, etc... )
m.waitForNextRestart()
// we need to check this before reentering the loop because the waitForNextRestart could have
// been terminated by a request from a user
if m.shouldStop {
m.container.ExitCode = exitStatus
return err
}
continue
}
m.container.ExitCode = exitStatus
m.container.LogEvent("die")
m.resetContainer(true)
return err
}
}
// resetMonitor resets the stateful fields on the containerMonitor based on the
// previous runs success or failure. Reguardless of success, if the container had
// an execution time of more than 10s then reset the timer back to the default
func (m *containerMonitor) resetMonitor(successful bool) {
executionTime := time.Now().Sub(m.lastStartTime).Seconds()
if executionTime > 10 {
m.timeIncrement = defaultTimeIncrement
} else {
// otherwise we need to increment the amount of time we wait before restarting
// the process. We will build up by multiplying the increment by 2
m.timeIncrement *= 2
}
// the container exited successfully so we need to reset the failure counter
if successful {
m.failureCount = 0
} else {
m.failureCount++
}
}
// waitForNextRestart waits with the default time increment to restart the container unless
// a user or docker asks for the container to be stopped
func (m *containerMonitor) waitForNextRestart() {
select {
case <-time.After(time.Duration(m.timeIncrement) * time.Millisecond):
case <-m.stopChan:
}
}
// shouldRestart checks the restart policy and applies the rules to determine if
// the container's process should be restarted
func (m *containerMonitor) shouldRestart(exitCode int) bool {
m.mux.Lock()
defer m.mux.Unlock()
// do not restart if the user or docker has requested that this container be stopped
if m.shouldStop {
return false
}
switch m.restartPolicy.Name {
case "always":
return true
case "on-failure":
// the default value of 0 for MaximumRetryCount means that we will not enforce a maximum count
if max := m.restartPolicy.MaximumRetryCount; max != 0 && m.failureCount >= max {
log.Debugf("stopping restart of container %s because maximum failure could of %d has been reached", max)
return false
}
return exitCode != 0
}
return false
}
// callback ensures that the container's state is properly updated after we
// received ack from the execution drivers
func (m *containerMonitor) callback(processConfig *execdriver.ProcessConfig, pid int) {
if processConfig.Tty {
// The callback is called after the process Start()
// so we are in the parent process. In TTY mode, stdin/out/err is the PtySlave
// which we close here.
if c, ok := processConfig.Stdout.(io.Closer); ok {
c.Close()
}
}
m.container.setRunning(pid)
// signal that the process has started
// close channel only if not closed
select {
case <-m.startSignal:
default:
close(m.startSignal)
}
if err := m.container.ToDisk(); err != nil {
log.Debugf("%s", err)
}
}
// resetContainer resets the container's IO and ensures that the command is able to be executed again
// by copying the data into a new struct
// if lock is true, then container locked during reset
func (m *containerMonitor) resetContainer(lock bool) {
container := m.container
if lock {
container.Lock()
defer container.Unlock()
}
if container.Config.OpenStdin {
if err := container.stdin.Close(); err != nil {
log.Errorf("%s: Error close stdin: %s", container.ID, err)
}
}
if err := container.stdout.Clean(); err != nil {
log.Errorf("%s: Error close stdout: %s", container.ID, err)
}
if err := container.stderr.Clean(); err != nil {
log.Errorf("%s: Error close stderr: %s", container.ID, err)
}
if container.command != nil && container.command.ProcessConfig.Terminal != nil {
if err := container.command.ProcessConfig.Terminal.Close(); err != nil {
log.Errorf("%s: Error closing terminal: %s", container.ID, err)
}
}
// Re-create a brand new stdin pipe once the container exited
if container.Config.OpenStdin {
container.stdin, container.stdinPipe = io.Pipe()
}
c := container.command.ProcessConfig.Cmd
container.command.ProcessConfig.Cmd = exec.Cmd{
Stdin: c.Stdin,
Stdout: c.Stdout,
Stderr: c.Stderr,
Path: c.Path,
Env: c.Env,
ExtraFiles: c.ExtraFiles,
Args: c.Args,
Dir: c.Dir,
SysProcAttr: c.SysProcAttr,
}
}