moby/distribution/xfer/transfer.go
Sebastiaan van Stijn c88a830507
distribution/xfer: use "main" instead of "master" for progress channel
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
2020-07-14 10:48:30 +02:00

401 lines
11 KiB
Go

package xfer // import "github.com/docker/docker/distribution/xfer"
import (
"context"
"runtime"
"sync"
"github.com/docker/docker/pkg/progress"
)
// DoNotRetry is an error wrapper indicating that the error cannot be resolved
// with a retry.
type DoNotRetry struct {
Err error
}
// Error returns the stringified representation of the encapsulated error.
func (e DoNotRetry) Error() string {
return e.Err.Error()
}
// Watcher is returned by Watch and can be passed to Release to stop watching.
type Watcher struct {
// signalChan is used to signal to the watcher goroutine that
// new progress information is available, or that the transfer
// has finished.
signalChan chan struct{}
// releaseChan signals to the watcher goroutine that the watcher
// should be detached.
releaseChan chan struct{}
// running remains open as long as the watcher is watching the
// transfer. It gets closed if the transfer finishes or the
// watcher is detached.
running chan struct{}
}
// Transfer represents an in-progress transfer.
type Transfer interface {
Watch(progressOutput progress.Output) *Watcher
Release(*Watcher)
Context() context.Context
Close()
Done() <-chan struct{}
Released() <-chan struct{}
Broadcast(mainProgressChan <-chan progress.Progress)
}
type transfer struct {
mu sync.Mutex
ctx context.Context
cancel context.CancelFunc
// watchers keeps track of the goroutines monitoring progress output,
// indexed by the channels that release them.
watchers map[chan struct{}]*Watcher
// lastProgress is the most recently received progress event.
lastProgress progress.Progress
// hasLastProgress is true when lastProgress has been set.
hasLastProgress bool
// running remains open as long as the transfer is in progress.
running chan struct{}
// released stays open until all watchers release the transfer and
// the transfer is no longer tracked by the transfer manager.
released chan struct{}
// broadcastDone is true if the main progress channel has closed.
broadcastDone bool
// closed is true if Close has been called
closed bool
// broadcastSyncChan allows watchers to "ping" the broadcasting
// goroutine to wait for it for deplete its input channel. This ensures
// a detaching watcher won't miss an event that was sent before it
// started detaching.
broadcastSyncChan chan struct{}
}
// NewTransfer creates a new transfer.
func NewTransfer() Transfer {
t := &transfer{
watchers: make(map[chan struct{}]*Watcher),
running: make(chan struct{}),
released: make(chan struct{}),
broadcastSyncChan: make(chan struct{}),
}
// This uses context.Background instead of a caller-supplied context
// so that a transfer won't be cancelled automatically if the client
// which requested it is ^C'd (there could be other viewers).
t.ctx, t.cancel = context.WithCancel(context.Background())
return t
}
// Broadcast copies the progress and error output to all viewers.
func (t *transfer) Broadcast(mainProgressChan <-chan progress.Progress) {
for {
var (
p progress.Progress
ok bool
)
select {
case p, ok = <-mainProgressChan:
default:
// We've depleted the channel, so now we can handle
// reads on broadcastSyncChan to let detaching watchers
// know we're caught up.
select {
case <-t.broadcastSyncChan:
continue
case p, ok = <-mainProgressChan:
}
}
t.mu.Lock()
if ok {
t.lastProgress = p
t.hasLastProgress = true
for _, w := range t.watchers {
select {
case w.signalChan <- struct{}{}:
default:
}
}
} else {
t.broadcastDone = true
}
t.mu.Unlock()
if !ok {
close(t.running)
return
}
}
}
// Watch adds a watcher to the transfer. The supplied channel gets progress
// updates and is closed when the transfer finishes.
func (t *transfer) Watch(progressOutput progress.Output) *Watcher {
t.mu.Lock()
defer t.mu.Unlock()
w := &Watcher{
releaseChan: make(chan struct{}),
signalChan: make(chan struct{}),
running: make(chan struct{}),
}
t.watchers[w.releaseChan] = w
if t.broadcastDone {
close(w.running)
return w
}
go func() {
defer func() {
close(w.running)
}()
var (
done bool
lastWritten progress.Progress
hasLastWritten bool
)
for {
t.mu.Lock()
hasLastProgress := t.hasLastProgress
lastProgress := t.lastProgress
t.mu.Unlock()
// Make sure we don't write the last progress item
// twice.
if hasLastProgress && (!done || !hasLastWritten || lastProgress != lastWritten) {
progressOutput.WriteProgress(lastProgress)
lastWritten = lastProgress
hasLastWritten = true
}
if done {
return
}
select {
case <-w.signalChan:
case <-w.releaseChan:
done = true
// Since the watcher is going to detach, make
// sure the broadcaster is caught up so we
// don't miss anything.
select {
case t.broadcastSyncChan <- struct{}{}:
case <-t.running:
}
case <-t.running:
done = true
}
}
}()
return w
}
// Release is the inverse of Watch; indicating that the watcher no longer wants
// to be notified about the progress of the transfer. All calls to Watch must
// be paired with later calls to Release so that the lifecycle of the transfer
// is properly managed.
func (t *transfer) Release(watcher *Watcher) {
t.mu.Lock()
delete(t.watchers, watcher.releaseChan)
if len(t.watchers) == 0 {
if t.closed {
// released may have been closed already if all
// watchers were released, then another one was added
// while waiting for a previous watcher goroutine to
// finish.
select {
case <-t.released:
default:
close(t.released)
}
} else {
t.cancel()
}
}
t.mu.Unlock()
close(watcher.releaseChan)
// Block until the watcher goroutine completes
<-watcher.running
}
// Done returns a channel which is closed if the transfer completes or is
// cancelled. Note that having 0 watchers causes a transfer to be cancelled.
func (t *transfer) Done() <-chan struct{} {
// Note that this doesn't return t.ctx.Done() because that channel will
// be closed the moment Cancel is called, and we need to return a
// channel that blocks until a cancellation is actually acknowledged by
// the transfer function.
return t.running
}
// Released returns a channel which is closed once all watchers release the
// transfer AND the transfer is no longer tracked by the transfer manager.
func (t *transfer) Released() <-chan struct{} {
return t.released
}
// Context returns the context associated with the transfer.
func (t *transfer) Context() context.Context {
return t.ctx
}
// Close is called by the transfer manager when the transfer is no longer
// being tracked.
func (t *transfer) Close() {
t.mu.Lock()
t.closed = true
if len(t.watchers) == 0 {
close(t.released)
}
t.mu.Unlock()
}
// DoFunc is a function called by the transfer manager to actually perform
// a transfer. It should be non-blocking. It should wait until the start channel
// is closed before transferring any data. If the function closes inactive, that
// signals to the transfer manager that the job is no longer actively moving
// data - for example, it may be waiting for a dependent transfer to finish.
// This prevents it from taking up a slot.
type DoFunc func(progressChan chan<- progress.Progress, start <-chan struct{}, inactive chan<- struct{}) Transfer
// TransferManager is used by LayerDownloadManager and LayerUploadManager to
// schedule and deduplicate transfers. It is up to the TransferManager
// implementation to make the scheduling and concurrency decisions.
type TransferManager interface {
// Transfer checks if a transfer with the given key is in progress. If
// so, it returns progress and error output from that transfer.
// Otherwise, it will call xferFunc to initiate the transfer.
Transfer(key string, xferFunc DoFunc, progressOutput progress.Output) (Transfer, *Watcher)
// SetConcurrency set the concurrencyLimit so that it is adjustable daemon reload
SetConcurrency(concurrency int)
}
type transferManager struct {
mu sync.Mutex
concurrencyLimit int
activeTransfers int
transfers map[string]Transfer
waitingTransfers []chan struct{}
}
// NewTransferManager returns a new TransferManager.
func NewTransferManager(concurrencyLimit int) TransferManager {
return &transferManager{
concurrencyLimit: concurrencyLimit,
transfers: make(map[string]Transfer),
}
}
// SetConcurrency sets the concurrencyLimit
func (tm *transferManager) SetConcurrency(concurrency int) {
tm.mu.Lock()
tm.concurrencyLimit = concurrency
tm.mu.Unlock()
}
// Transfer checks if a transfer matching the given key is in progress. If not,
// it starts one by calling xferFunc. The caller supplies a channel which
// receives progress output from the transfer.
func (tm *transferManager) Transfer(key string, xferFunc DoFunc, progressOutput progress.Output) (Transfer, *Watcher) {
tm.mu.Lock()
defer tm.mu.Unlock()
for {
xfer, present := tm.transfers[key]
if !present {
break
}
// Transfer is already in progress.
watcher := xfer.Watch(progressOutput)
select {
case <-xfer.Context().Done():
// We don't want to watch a transfer that has been cancelled.
// Wait for it to be removed from the map and try again.
xfer.Release(watcher)
tm.mu.Unlock()
// The goroutine that removes this transfer from the
// map is also waiting for xfer.Done(), so yield to it.
// This could be avoided by adding a Closed method
// to Transfer to allow explicitly waiting for it to be
// removed the map, but forcing a scheduling round in
// this very rare case seems better than bloating the
// interface definition.
runtime.Gosched()
<-xfer.Done()
tm.mu.Lock()
default:
return xfer, watcher
}
}
start := make(chan struct{})
inactive := make(chan struct{})
if tm.concurrencyLimit == 0 || tm.activeTransfers < tm.concurrencyLimit {
close(start)
tm.activeTransfers++
} else {
tm.waitingTransfers = append(tm.waitingTransfers, start)
}
mainProgressChan := make(chan progress.Progress)
xfer := xferFunc(mainProgressChan, start, inactive)
watcher := xfer.Watch(progressOutput)
go xfer.Broadcast(mainProgressChan)
tm.transfers[key] = xfer
// When the transfer is finished, remove from the map.
go func() {
for {
select {
case <-inactive:
tm.mu.Lock()
tm.inactivate(start)
tm.mu.Unlock()
inactive = nil
case <-xfer.Done():
tm.mu.Lock()
if inactive != nil {
tm.inactivate(start)
}
delete(tm.transfers, key)
tm.mu.Unlock()
xfer.Close()
return
}
}
}()
return xfer, watcher
}
func (tm *transferManager) inactivate(start chan struct{}) {
// If the transfer was started, remove it from the activeTransfers
// count.
select {
case <-start:
// Start next transfer if any are waiting
if len(tm.waitingTransfers) != 0 {
close(tm.waitingTransfers[0])
tm.waitingTransfers = tm.waitingTransfers[1:]
} else {
tm.activeTransfers--
}
default:
}
}