moby/vendor/archive/tar/reader.go
Tonis Tiigi 72df48d1ad vendor: add archive/tar
Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
2017-07-13 19:08:19 -07:00

800 lines
24 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tar
// TODO(dsymonds):
// - pax extensions
import (
"bytes"
"errors"
"io"
"io/ioutil"
"math"
"strconv"
"strings"
"time"
)
var (
ErrHeader = errors.New("archive/tar: invalid tar header")
)
// A Reader provides sequential access to the contents of a tar archive.
// A tar archive consists of a sequence of files.
// The Next method advances to the next file in the archive (including the first),
// and then it can be treated as an io.Reader to access the file's data.
type Reader struct {
r io.Reader
pad int64 // amount of padding (ignored) after current file entry
curr numBytesReader // reader for current file entry
blk block // buffer to use as temporary local storage
// err is a persistent error.
// It is only the responsibility of every exported method of Reader to
// ensure that this error is sticky.
err error
}
// A numBytesReader is an io.Reader with a numBytes method, returning the number
// of bytes remaining in the underlying encoded data.
type numBytesReader interface {
io.Reader
numBytes() int64
}
// A regFileReader is a numBytesReader for reading file data from a tar archive.
type regFileReader struct {
r io.Reader // underlying reader
nb int64 // number of unread bytes for current file entry
}
// A sparseFileReader is a numBytesReader for reading sparse file data from a
// tar archive.
type sparseFileReader struct {
rfr numBytesReader // Reads the sparse-encoded file data
sp []sparseEntry // The sparse map for the file
pos int64 // Keeps track of file position
total int64 // Total size of the file
}
// A sparseEntry holds a single entry in a sparse file's sparse map.
//
// Sparse files are represented using a series of sparseEntrys.
// Despite the name, a sparseEntry represents an actual data fragment that
// references data found in the underlying archive stream. All regions not
// covered by a sparseEntry are logically filled with zeros.
//
// For example, if the underlying raw file contains the 10-byte data:
// var compactData = "abcdefgh"
//
// And the sparse map has the following entries:
// var sp = []sparseEntry{
// {offset: 2, numBytes: 5} // Data fragment for [2..7]
// {offset: 18, numBytes: 3} // Data fragment for [18..21]
// }
//
// Then the content of the resulting sparse file with a "real" size of 25 is:
// var sparseData = "\x00"*2 + "abcde" + "\x00"*11 + "fgh" + "\x00"*4
type sparseEntry struct {
offset int64 // Starting position of the fragment
numBytes int64 // Length of the fragment
}
// Keywords for GNU sparse files in a PAX extended header
const (
paxGNUSparseNumBlocks = "GNU.sparse.numblocks"
paxGNUSparseOffset = "GNU.sparse.offset"
paxGNUSparseNumBytes = "GNU.sparse.numbytes"
paxGNUSparseMap = "GNU.sparse.map"
paxGNUSparseName = "GNU.sparse.name"
paxGNUSparseMajor = "GNU.sparse.major"
paxGNUSparseMinor = "GNU.sparse.minor"
paxGNUSparseSize = "GNU.sparse.size"
paxGNUSparseRealSize = "GNU.sparse.realsize"
)
// NewReader creates a new Reader reading from r.
func NewReader(r io.Reader) *Reader { return &Reader{r: r} }
// Next advances to the next entry in the tar archive.
//
// io.EOF is returned at the end of the input.
func (tr *Reader) Next() (*Header, error) {
if tr.err != nil {
return nil, tr.err
}
hdr, err := tr.next()
tr.err = err
return hdr, err
}
func (tr *Reader) next() (*Header, error) {
var extHdrs map[string]string
// Externally, Next iterates through the tar archive as if it is a series of
// files. Internally, the tar format often uses fake "files" to add meta
// data that describes the next file. These meta data "files" should not
// normally be visible to the outside. As such, this loop iterates through
// one or more "header files" until it finds a "normal file".
loop:
for {
if err := tr.skipUnread(); err != nil {
return nil, err
}
hdr, rawHdr, err := tr.readHeader()
if err != nil {
return nil, err
}
if err := tr.handleRegularFile(hdr); err != nil {
return nil, err
}
// Check for PAX/GNU special headers and files.
switch hdr.Typeflag {
case TypeXHeader:
extHdrs, err = parsePAX(tr)
if err != nil {
return nil, err
}
continue loop // This is a meta header affecting the next header
case TypeGNULongName, TypeGNULongLink:
realname, err := ioutil.ReadAll(tr)
if err != nil {
return nil, err
}
// Convert GNU extensions to use PAX headers.
if extHdrs == nil {
extHdrs = make(map[string]string)
}
var p parser
switch hdr.Typeflag {
case TypeGNULongName:
extHdrs[paxPath] = p.parseString(realname)
case TypeGNULongLink:
extHdrs[paxLinkpath] = p.parseString(realname)
}
if p.err != nil {
return nil, p.err
}
continue loop // This is a meta header affecting the next header
default:
// The old GNU sparse format is handled here since it is technically
// just a regular file with additional attributes.
if err := mergePAX(hdr, extHdrs); err != nil {
return nil, err
}
// The extended headers may have updated the size.
// Thus, setup the regFileReader again after merging PAX headers.
if err := tr.handleRegularFile(hdr); err != nil {
return nil, err
}
// Sparse formats rely on being able to read from the logical data
// section; there must be a preceding call to handleRegularFile.
if err := tr.handleSparseFile(hdr, rawHdr, extHdrs); err != nil {
return nil, err
}
return hdr, nil // This is a file, so stop
}
}
}
// handleRegularFile sets up the current file reader and padding such that it
// can only read the following logical data section. It will properly handle
// special headers that contain no data section.
func (tr *Reader) handleRegularFile(hdr *Header) error {
nb := hdr.Size
if isHeaderOnlyType(hdr.Typeflag) {
nb = 0
}
if nb < 0 {
return ErrHeader
}
tr.pad = -nb & (blockSize - 1) // blockSize is a power of two
tr.curr = &regFileReader{r: tr.r, nb: nb}
return nil
}
// handleSparseFile checks if the current file is a sparse format of any type
// and sets the curr reader appropriately.
func (tr *Reader) handleSparseFile(hdr *Header, rawHdr *block, extHdrs map[string]string) error {
var sp []sparseEntry
var err error
if hdr.Typeflag == TypeGNUSparse {
sp, err = tr.readOldGNUSparseMap(hdr, rawHdr)
if err != nil {
return err
}
} else {
sp, err = tr.checkForGNUSparsePAXHeaders(hdr, extHdrs)
if err != nil {
return err
}
}
// If sp is non-nil, then this is a sparse file.
// Note that it is possible for len(sp) to be zero.
if sp != nil {
tr.curr, err = newSparseFileReader(tr.curr, sp, hdr.Size)
}
return err
}
// checkForGNUSparsePAXHeaders checks the PAX headers for GNU sparse headers. If they are found, then
// this function reads the sparse map and returns it. Unknown sparse formats are ignored, causing the file to
// be treated as a regular file.
func (tr *Reader) checkForGNUSparsePAXHeaders(hdr *Header, headers map[string]string) ([]sparseEntry, error) {
var sparseFormat string
// Check for sparse format indicators
major, majorOk := headers[paxGNUSparseMajor]
minor, minorOk := headers[paxGNUSparseMinor]
sparseName, sparseNameOk := headers[paxGNUSparseName]
_, sparseMapOk := headers[paxGNUSparseMap]
sparseSize, sparseSizeOk := headers[paxGNUSparseSize]
sparseRealSize, sparseRealSizeOk := headers[paxGNUSparseRealSize]
// Identify which, if any, sparse format applies from which PAX headers are set
if majorOk && minorOk {
sparseFormat = major + "." + minor
} else if sparseNameOk && sparseMapOk {
sparseFormat = "0.1"
} else if sparseSizeOk {
sparseFormat = "0.0"
} else {
// Not a PAX format GNU sparse file.
return nil, nil
}
// Check for unknown sparse format
if sparseFormat != "0.0" && sparseFormat != "0.1" && sparseFormat != "1.0" {
return nil, nil
}
// Update hdr from GNU sparse PAX headers
if sparseNameOk {
hdr.Name = sparseName
}
if sparseSizeOk {
realSize, err := strconv.ParseInt(sparseSize, 10, 64)
if err != nil {
return nil, ErrHeader
}
hdr.Size = realSize
} else if sparseRealSizeOk {
realSize, err := strconv.ParseInt(sparseRealSize, 10, 64)
if err != nil {
return nil, ErrHeader
}
hdr.Size = realSize
}
// Set up the sparse map, according to the particular sparse format in use
var sp []sparseEntry
var err error
switch sparseFormat {
case "0.0", "0.1":
sp, err = readGNUSparseMap0x1(headers)
case "1.0":
sp, err = readGNUSparseMap1x0(tr.curr)
}
return sp, err
}
// mergePAX merges well known headers according to PAX standard.
// In general headers with the same name as those found
// in the header struct overwrite those found in the header
// struct with higher precision or longer values. Esp. useful
// for name and linkname fields.
func mergePAX(hdr *Header, headers map[string]string) (err error) {
var id64 int64
for k, v := range headers {
switch k {
case paxPath:
hdr.Name = v
case paxLinkpath:
hdr.Linkname = v
case paxUname:
hdr.Uname = v
case paxGname:
hdr.Gname = v
case paxUid:
id64, err = strconv.ParseInt(v, 10, 64)
hdr.Uid = int(id64) // Integer overflow possible
case paxGid:
id64, err = strconv.ParseInt(v, 10, 64)
hdr.Gid = int(id64) // Integer overflow possible
case paxAtime:
hdr.AccessTime, err = parsePAXTime(v)
case paxMtime:
hdr.ModTime, err = parsePAXTime(v)
case paxCtime:
hdr.ChangeTime, err = parsePAXTime(v)
case paxSize:
hdr.Size, err = strconv.ParseInt(v, 10, 64)
default:
if strings.HasPrefix(k, paxXattr) {
if hdr.Xattrs == nil {
hdr.Xattrs = make(map[string]string)
}
hdr.Xattrs[k[len(paxXattr):]] = v
}
}
if err != nil {
return ErrHeader
}
}
return nil
}
// parsePAX parses PAX headers.
// If an extended header (type 'x') is invalid, ErrHeader is returned
func parsePAX(r io.Reader) (map[string]string, error) {
buf, err := ioutil.ReadAll(r)
if err != nil {
return nil, err
}
sbuf := string(buf)
// For GNU PAX sparse format 0.0 support.
// This function transforms the sparse format 0.0 headers into format 0.1
// headers since 0.0 headers were not PAX compliant.
var sparseMap []string
extHdrs := make(map[string]string)
for len(sbuf) > 0 {
key, value, residual, err := parsePAXRecord(sbuf)
if err != nil {
return nil, ErrHeader
}
sbuf = residual
switch key {
case paxGNUSparseOffset, paxGNUSparseNumBytes:
// Validate sparse header order and value.
if (len(sparseMap)%2 == 0 && key != paxGNUSparseOffset) ||
(len(sparseMap)%2 == 1 && key != paxGNUSparseNumBytes) ||
strings.Contains(value, ",") {
return nil, ErrHeader
}
sparseMap = append(sparseMap, value)
default:
// According to PAX specification, a value is stored only if it is
// non-empty. Otherwise, the key is deleted.
if len(value) > 0 {
extHdrs[key] = value
} else {
delete(extHdrs, key)
}
}
}
if len(sparseMap) > 0 {
extHdrs[paxGNUSparseMap] = strings.Join(sparseMap, ",")
}
return extHdrs, nil
}
// skipUnread skips any unread bytes in the existing file entry, as well as any
// alignment padding. It returns io.ErrUnexpectedEOF if any io.EOF is
// encountered in the data portion; it is okay to hit io.EOF in the padding.
//
// Note that this function still works properly even when sparse files are being
// used since numBytes returns the bytes remaining in the underlying io.Reader.
func (tr *Reader) skipUnread() error {
dataSkip := tr.numBytes() // Number of data bytes to skip
totalSkip := dataSkip + tr.pad // Total number of bytes to skip
tr.curr, tr.pad = nil, 0
// If possible, Seek to the last byte before the end of the data section.
// Do this because Seek is often lazy about reporting errors; this will mask
// the fact that the tar stream may be truncated. We can rely on the
// io.CopyN done shortly afterwards to trigger any IO errors.
var seekSkipped int64 // Number of bytes skipped via Seek
if sr, ok := tr.r.(io.Seeker); ok && dataSkip > 1 {
// Not all io.Seeker can actually Seek. For example, os.Stdin implements
// io.Seeker, but calling Seek always returns an error and performs
// no action. Thus, we try an innocent seek to the current position
// to see if Seek is really supported.
pos1, err := sr.Seek(0, io.SeekCurrent)
if err == nil {
// Seek seems supported, so perform the real Seek.
pos2, err := sr.Seek(dataSkip-1, io.SeekCurrent)
if err != nil {
return err
}
seekSkipped = pos2 - pos1
}
}
copySkipped, err := io.CopyN(ioutil.Discard, tr.r, totalSkip-seekSkipped)
if err == io.EOF && seekSkipped+copySkipped < dataSkip {
err = io.ErrUnexpectedEOF
}
return err
}
// readHeader reads the next block header and assumes that the underlying reader
// is already aligned to a block boundary. It returns the raw block of the
// header in case further processing is required.
//
// The err will be set to io.EOF only when one of the following occurs:
// * Exactly 0 bytes are read and EOF is hit.
// * Exactly 1 block of zeros is read and EOF is hit.
// * At least 2 blocks of zeros are read.
func (tr *Reader) readHeader() (*Header, *block, error) {
// Two blocks of zero bytes marks the end of the archive.
if _, err := io.ReadFull(tr.r, tr.blk[:]); err != nil {
return nil, nil, err // EOF is okay here; exactly 0 bytes read
}
if bytes.Equal(tr.blk[:], zeroBlock[:]) {
if _, err := io.ReadFull(tr.r, tr.blk[:]); err != nil {
return nil, nil, err // EOF is okay here; exactly 1 block of zeros read
}
if bytes.Equal(tr.blk[:], zeroBlock[:]) {
return nil, nil, io.EOF // normal EOF; exactly 2 block of zeros read
}
return nil, nil, ErrHeader // Zero block and then non-zero block
}
// Verify the header matches a known format.
format := tr.blk.GetFormat()
if format == formatUnknown {
return nil, nil, ErrHeader
}
var p parser
hdr := new(Header)
// Unpack the V7 header.
v7 := tr.blk.V7()
hdr.Name = p.parseString(v7.Name())
hdr.Mode = p.parseNumeric(v7.Mode())
hdr.Uid = int(p.parseNumeric(v7.UID()))
hdr.Gid = int(p.parseNumeric(v7.GID()))
hdr.Size = p.parseNumeric(v7.Size())
hdr.ModTime = time.Unix(p.parseNumeric(v7.ModTime()), 0)
hdr.Typeflag = v7.TypeFlag()[0]
hdr.Linkname = p.parseString(v7.LinkName())
// Unpack format specific fields.
if format > formatV7 {
ustar := tr.blk.USTAR()
hdr.Uname = p.parseString(ustar.UserName())
hdr.Gname = p.parseString(ustar.GroupName())
if hdr.Typeflag == TypeChar || hdr.Typeflag == TypeBlock {
hdr.Devmajor = p.parseNumeric(ustar.DevMajor())
hdr.Devminor = p.parseNumeric(ustar.DevMinor())
}
var prefix string
switch format {
case formatUSTAR, formatGNU:
// TODO(dsnet): Do not use the prefix field for the GNU format!
// See golang.org/issues/12594
ustar := tr.blk.USTAR()
prefix = p.parseString(ustar.Prefix())
case formatSTAR:
star := tr.blk.STAR()
prefix = p.parseString(star.Prefix())
hdr.AccessTime = time.Unix(p.parseNumeric(star.AccessTime()), 0)
hdr.ChangeTime = time.Unix(p.parseNumeric(star.ChangeTime()), 0)
}
if len(prefix) > 0 {
hdr.Name = prefix + "/" + hdr.Name
}
}
return hdr, &tr.blk, p.err
}
// readOldGNUSparseMap reads the sparse map from the old GNU sparse format.
// The sparse map is stored in the tar header if it's small enough.
// If it's larger than four entries, then one or more extension headers are used
// to store the rest of the sparse map.
//
// The Header.Size does not reflect the size of any extended headers used.
// Thus, this function will read from the raw io.Reader to fetch extra headers.
// This method mutates blk in the process.
func (tr *Reader) readOldGNUSparseMap(hdr *Header, blk *block) ([]sparseEntry, error) {
// Make sure that the input format is GNU.
// Unfortunately, the STAR format also has a sparse header format that uses
// the same type flag but has a completely different layout.
if blk.GetFormat() != formatGNU {
return nil, ErrHeader
}
var p parser
hdr.Size = p.parseNumeric(blk.GNU().RealSize())
if p.err != nil {
return nil, p.err
}
var s sparseArray = blk.GNU().Sparse()
var sp = make([]sparseEntry, 0, s.MaxEntries())
for {
for i := 0; i < s.MaxEntries(); i++ {
// This termination condition is identical to GNU and BSD tar.
if s.Entry(i).Offset()[0] == 0x00 {
break // Don't return, need to process extended headers (even if empty)
}
offset := p.parseNumeric(s.Entry(i).Offset())
numBytes := p.parseNumeric(s.Entry(i).NumBytes())
if p.err != nil {
return nil, p.err
}
sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes})
}
if s.IsExtended()[0] > 0 {
// There are more entries. Read an extension header and parse its entries.
if _, err := io.ReadFull(tr.r, blk[:]); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return nil, err
}
s = blk.Sparse()
continue
}
return sp, nil // Done
}
}
// readGNUSparseMap1x0 reads the sparse map as stored in GNU's PAX sparse format
// version 1.0. The format of the sparse map consists of a series of
// newline-terminated numeric fields. The first field is the number of entries
// and is always present. Following this are the entries, consisting of two
// fields (offset, numBytes). This function must stop reading at the end
// boundary of the block containing the last newline.
//
// Note that the GNU manual says that numeric values should be encoded in octal
// format. However, the GNU tar utility itself outputs these values in decimal.
// As such, this library treats values as being encoded in decimal.
func readGNUSparseMap1x0(r io.Reader) ([]sparseEntry, error) {
var cntNewline int64
var buf bytes.Buffer
var blk = make([]byte, blockSize)
// feedTokens copies data in numBlock chunks from r into buf until there are
// at least cnt newlines in buf. It will not read more blocks than needed.
var feedTokens = func(cnt int64) error {
for cntNewline < cnt {
if _, err := io.ReadFull(r, blk); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return err
}
buf.Write(blk)
for _, c := range blk {
if c == '\n' {
cntNewline++
}
}
}
return nil
}
// nextToken gets the next token delimited by a newline. This assumes that
// at least one newline exists in the buffer.
var nextToken = func() string {
cntNewline--
tok, _ := buf.ReadString('\n')
return tok[:len(tok)-1] // Cut off newline
}
// Parse for the number of entries.
// Use integer overflow resistant math to check this.
if err := feedTokens(1); err != nil {
return nil, err
}
numEntries, err := strconv.ParseInt(nextToken(), 10, 0) // Intentionally parse as native int
if err != nil || numEntries < 0 || int(2*numEntries) < int(numEntries) {
return nil, ErrHeader
}
// Parse for all member entries.
// numEntries is trusted after this since a potential attacker must have
// committed resources proportional to what this library used.
if err := feedTokens(2 * numEntries); err != nil {
return nil, err
}
sp := make([]sparseEntry, 0, numEntries)
for i := int64(0); i < numEntries; i++ {
offset, err := strconv.ParseInt(nextToken(), 10, 64)
if err != nil {
return nil, ErrHeader
}
numBytes, err := strconv.ParseInt(nextToken(), 10, 64)
if err != nil {
return nil, ErrHeader
}
sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes})
}
return sp, nil
}
// readGNUSparseMap0x1 reads the sparse map as stored in GNU's PAX sparse format
// version 0.1. The sparse map is stored in the PAX headers.
func readGNUSparseMap0x1(extHdrs map[string]string) ([]sparseEntry, error) {
// Get number of entries.
// Use integer overflow resistant math to check this.
numEntriesStr := extHdrs[paxGNUSparseNumBlocks]
numEntries, err := strconv.ParseInt(numEntriesStr, 10, 0) // Intentionally parse as native int
if err != nil || numEntries < 0 || int(2*numEntries) < int(numEntries) {
return nil, ErrHeader
}
// There should be two numbers in sparseMap for each entry.
sparseMap := strings.Split(extHdrs[paxGNUSparseMap], ",")
if int64(len(sparseMap)) != 2*numEntries {
return nil, ErrHeader
}
// Loop through the entries in the sparse map.
// numEntries is trusted now.
sp := make([]sparseEntry, 0, numEntries)
for i := int64(0); i < numEntries; i++ {
offset, err := strconv.ParseInt(sparseMap[2*i], 10, 64)
if err != nil {
return nil, ErrHeader
}
numBytes, err := strconv.ParseInt(sparseMap[2*i+1], 10, 64)
if err != nil {
return nil, ErrHeader
}
sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes})
}
return sp, nil
}
// numBytes returns the number of bytes left to read in the current file's entry
// in the tar archive, or 0 if there is no current file.
func (tr *Reader) numBytes() int64 {
if tr.curr == nil {
// No current file, so no bytes
return 0
}
return tr.curr.numBytes()
}
// Read reads from the current entry in the tar archive.
// It returns 0, io.EOF when it reaches the end of that entry,
// until Next is called to advance to the next entry.
//
// Calling Read on special types like TypeLink, TypeSymLink, TypeChar,
// TypeBlock, TypeDir, and TypeFifo returns 0, io.EOF regardless of what
// the Header.Size claims.
func (tr *Reader) Read(b []byte) (int, error) {
if tr.err != nil {
return 0, tr.err
}
if tr.curr == nil {
return 0, io.EOF
}
n, err := tr.curr.Read(b)
if err != nil && err != io.EOF {
tr.err = err
}
return n, err
}
func (rfr *regFileReader) Read(b []byte) (n int, err error) {
if rfr.nb == 0 {
// file consumed
return 0, io.EOF
}
if int64(len(b)) > rfr.nb {
b = b[0:rfr.nb]
}
n, err = rfr.r.Read(b)
rfr.nb -= int64(n)
if err == io.EOF && rfr.nb > 0 {
err = io.ErrUnexpectedEOF
}
return
}
// numBytes returns the number of bytes left to read in the file's data in the tar archive.
func (rfr *regFileReader) numBytes() int64 {
return rfr.nb
}
// newSparseFileReader creates a new sparseFileReader, but validates all of the
// sparse entries before doing so.
func newSparseFileReader(rfr numBytesReader, sp []sparseEntry, total int64) (*sparseFileReader, error) {
if total < 0 {
return nil, ErrHeader // Total size cannot be negative
}
// Validate all sparse entries. These are the same checks as performed by
// the BSD tar utility.
for i, s := range sp {
switch {
case s.offset < 0 || s.numBytes < 0:
return nil, ErrHeader // Negative values are never okay
case s.offset > math.MaxInt64-s.numBytes:
return nil, ErrHeader // Integer overflow with large length
case s.offset+s.numBytes > total:
return nil, ErrHeader // Region extends beyond the "real" size
case i > 0 && sp[i-1].offset+sp[i-1].numBytes > s.offset:
return nil, ErrHeader // Regions can't overlap and must be in order
}
}
return &sparseFileReader{rfr: rfr, sp: sp, total: total}, nil
}
// readHole reads a sparse hole ending at endOffset.
func (sfr *sparseFileReader) readHole(b []byte, endOffset int64) int {
n64 := endOffset - sfr.pos
if n64 > int64(len(b)) {
n64 = int64(len(b))
}
n := int(n64)
for i := 0; i < n; i++ {
b[i] = 0
}
sfr.pos += n64
return n
}
// Read reads the sparse file data in expanded form.
func (sfr *sparseFileReader) Read(b []byte) (n int, err error) {
// Skip past all empty fragments.
for len(sfr.sp) > 0 && sfr.sp[0].numBytes == 0 {
sfr.sp = sfr.sp[1:]
}
// If there are no more fragments, then it is possible that there
// is one last sparse hole.
if len(sfr.sp) == 0 {
// This behavior matches the BSD tar utility.
// However, GNU tar stops returning data even if sfr.total is unmet.
if sfr.pos < sfr.total {
return sfr.readHole(b, sfr.total), nil
}
return 0, io.EOF
}
// In front of a data fragment, so read a hole.
if sfr.pos < sfr.sp[0].offset {
return sfr.readHole(b, sfr.sp[0].offset), nil
}
// In a data fragment, so read from it.
// This math is overflow free since we verify that offset and numBytes can
// be safely added when creating the sparseFileReader.
endPos := sfr.sp[0].offset + sfr.sp[0].numBytes // End offset of fragment
bytesLeft := endPos - sfr.pos // Bytes left in fragment
if int64(len(b)) > bytesLeft {
b = b[:bytesLeft]
}
n, err = sfr.rfr.Read(b)
sfr.pos += int64(n)
if err == io.EOF {
if sfr.pos < endPos {
err = io.ErrUnexpectedEOF // There was supposed to be more data
} else if sfr.pos < sfr.total {
err = nil // There is still an implicit sparse hole at the end
}
}
if sfr.pos == endPos {
sfr.sp = sfr.sp[1:] // We are done with this fragment, so pop it
}
return n, err
}
// numBytes returns the number of bytes left to read in the sparse file's
// sparse-encoded data in the tar archive.
func (sfr *sparseFileReader) numBytes() int64 {
return sfr.rfr.numBytes()
}