moby/libnetwork/bitmap/sequence.go
Cory Snider 6f08fe20e9 libnetwork/bit{seq,map}: delete CheckConsistency()
That method was only referenced by ipam.Allocator, but as it no longer
stores any state persistently there is no possibility for it to load an
inconsistent bit-sequence from Docker 1.9.x.

Signed-off-by: Cory Snider <csnider@mirantis.com>
2023-01-27 11:47:43 -05:00

585 lines
17 KiB
Go

// Package bitmap provides a datatype for long vectors of bits.
package bitmap
import (
"encoding/binary"
"encoding/json"
"errors"
"fmt"
)
// block sequence constants
// If needed we can think of making these configurable
const (
blockLen = uint32(32)
blockBytes = uint64(blockLen / 8)
blockMAX = uint32(1<<blockLen - 1)
blockFirstBit = uint32(1) << (blockLen - 1)
invalidPos = uint64(0xFFFFFFFFFFFFFFFF)
)
var (
// ErrNoBitAvailable is returned when no more bits are available to set
ErrNoBitAvailable = errors.New("no bit available")
// ErrBitAllocated is returned when the specific bit requested is already set
ErrBitAllocated = errors.New("requested bit is already allocated")
)
// https://github.com/golang/go/issues/8005#issuecomment-190753527
type noCopy struct{}
func (noCopy) Lock() {}
// Bitmap is a fixed-length bit vector. It is not safe for concurrent use.
//
// The data is stored as a list of run-length encoded blocks. It operates
// directly on the encoded representation, without decompressing.
type Bitmap struct {
bits uint64
unselected uint64
head *sequence
curr uint64
// Shallow copies would share the same head pointer but a copy of the
// unselected count. Mutating the sequence through one would change the
// bits for all copies but only update that one copy's unselected count,
// which would result in subtle bugs.
noCopy noCopy
}
// NewHandle returns a new Bitmap n bits long.
func New(n uint64) *Bitmap {
return &Bitmap{
bits: n,
unselected: n,
head: &sequence{
block: 0x0,
count: getNumBlocks(n),
},
}
}
// Copy returns a deep copy of b.
func Copy(b *Bitmap) *Bitmap {
return &Bitmap{
bits: b.bits,
unselected: b.unselected,
head: b.head.getCopy(),
curr: b.curr,
}
}
// sequence represents a recurring sequence of 32 bits long bitmasks
type sequence struct {
block uint32 // block is a symbol representing 4 byte long allocation bitmask
count uint64 // number of consecutive blocks (symbols)
next *sequence // next sequence
}
// String returns a string representation of the block sequence starting from this block
func (s *sequence) toString() string {
var nextBlock string
if s.next == nil {
nextBlock = "end"
} else {
nextBlock = s.next.toString()
}
return fmt.Sprintf("(0x%x, %d)->%s", s.block, s.count, nextBlock)
}
// GetAvailableBit returns the position of the first unset bit in the bitmask represented by this sequence
func (s *sequence) getAvailableBit(from uint64) (uint64, uint64, error) {
if s.block == blockMAX || s.count == 0 {
return invalidPos, invalidPos, ErrNoBitAvailable
}
bits := from
bitSel := blockFirstBit >> from
for bitSel > 0 && s.block&bitSel != 0 {
bitSel >>= 1
bits++
}
// Check if the loop exited because it could not
// find any available bit int block starting from
// "from". Return invalid pos in that case.
if bitSel == 0 {
return invalidPos, invalidPos, ErrNoBitAvailable
}
return bits / 8, bits % 8, nil
}
// GetCopy returns a copy of the linked list rooted at this node
func (s *sequence) getCopy() *sequence {
n := &sequence{block: s.block, count: s.count}
pn := n
ps := s.next
for ps != nil {
pn.next = &sequence{block: ps.block, count: ps.count}
pn = pn.next
ps = ps.next
}
return n
}
// Equal checks if this sequence is equal to the passed one
func (s *sequence) equal(o *sequence) bool {
this := s
other := o
for this != nil {
if other == nil {
return false
}
if this.block != other.block || this.count != other.count {
return false
}
this = this.next
other = other.next
}
return other == nil
}
// ToByteArray converts the sequence into a byte array
func (s *sequence) toByteArray() ([]byte, error) {
var bb []byte
p := s
b := make([]byte, 12)
for p != nil {
binary.BigEndian.PutUint32(b[0:], p.block)
binary.BigEndian.PutUint64(b[4:], p.count)
bb = append(bb, b...)
p = p.next
}
return bb, nil
}
// fromByteArray construct the sequence from the byte array
func (s *sequence) fromByteArray(data []byte) error {
l := len(data)
if l%12 != 0 {
return fmt.Errorf("cannot deserialize byte sequence of length %d (%v)", l, data)
}
p := s
i := 0
for {
p.block = binary.BigEndian.Uint32(data[i : i+4])
p.count = binary.BigEndian.Uint64(data[i+4 : i+12])
i += 12
if i == l {
break
}
p.next = &sequence{}
p = p.next
}
return nil
}
// SetAnyInRange sets the first unset bit in the range [start, end) and returns
// the ordinal of the set bit.
//
// When serial=true, the bitmap is scanned starting from the ordinal following
// the bit most recently set by [Bitmap.SetAny] or [Bitmap.SetAnyInRange].
func (h *Bitmap) SetAnyInRange(start, end uint64, serial bool) (uint64, error) {
if end < start || end >= h.bits {
return invalidPos, fmt.Errorf("invalid bit range [%d, %d)", start, end)
}
if h.Unselected() == 0 {
return invalidPos, ErrNoBitAvailable
}
return h.set(0, start, end, true, false, serial)
}
// SetAny sets the first unset bit in the sequence and returns the ordinal of
// the set bit.
//
// When serial=true, the bitmap is scanned starting from the ordinal following
// the bit most recently set by [Bitmap.SetAny] or [Bitmap.SetAnyInRange].
func (h *Bitmap) SetAny(serial bool) (uint64, error) {
if h.Unselected() == 0 {
return invalidPos, ErrNoBitAvailable
}
return h.set(0, 0, h.bits-1, true, false, serial)
}
// Set atomically sets the corresponding bit in the sequence
func (h *Bitmap) Set(ordinal uint64) error {
if err := h.validateOrdinal(ordinal); err != nil {
return err
}
_, err := h.set(ordinal, 0, 0, false, false, false)
return err
}
// Unset atomically unsets the corresponding bit in the sequence
func (h *Bitmap) Unset(ordinal uint64) error {
if err := h.validateOrdinal(ordinal); err != nil {
return err
}
_, err := h.set(ordinal, 0, 0, false, true, false)
return err
}
// IsSet atomically checks if the ordinal bit is set. In case ordinal
// is outside of the bit sequence limits, false is returned.
func (h *Bitmap) IsSet(ordinal uint64) bool {
if err := h.validateOrdinal(ordinal); err != nil {
return false
}
_, _, err := checkIfAvailable(h.head, ordinal)
return err != nil
}
// set/reset the bit
func (h *Bitmap) set(ordinal, start, end uint64, any bool, release bool, serial bool) (uint64, error) {
var (
bitPos uint64
bytePos uint64
ret uint64
err error
)
curr := uint64(0)
if serial {
curr = h.curr
}
// Get position if available
if release {
bytePos, bitPos = ordinalToPos(ordinal)
} else {
if any {
bytePos, bitPos, err = getAvailableFromCurrent(h.head, start, curr, end)
ret = posToOrdinal(bytePos, bitPos)
if err == nil {
h.curr = ret + 1
}
} else {
bytePos, bitPos, err = checkIfAvailable(h.head, ordinal)
ret = ordinal
}
}
if err != nil {
return ret, err
}
h.head = pushReservation(bytePos, bitPos, h.head, release)
if release {
h.unselected++
} else {
h.unselected--
}
return ret, nil
}
// checks is needed because to cover the case where the number of bits is not a multiple of blockLen
func (h *Bitmap) validateOrdinal(ordinal uint64) error {
if ordinal >= h.bits {
return errors.New("bit does not belong to the sequence")
}
return nil
}
// MarshalBinary encodes h into a binary representation.
func (h *Bitmap) MarshalBinary() ([]byte, error) {
ba := make([]byte, 16)
binary.BigEndian.PutUint64(ba[0:], h.bits)
binary.BigEndian.PutUint64(ba[8:], h.unselected)
bm, err := h.head.toByteArray()
if err != nil {
return nil, fmt.Errorf("failed to serialize head: %v", err)
}
ba = append(ba, bm...)
return ba, nil
}
// UnmarshalBinary decodes a binary representation of a Bitmap value which was
// generated using [Bitmap.MarshalBinary].
//
// The scan position for serial [Bitmap.SetAny] and [Bitmap.SetAnyInRange]
// operations is neither unmarshaled nor reset.
func (h *Bitmap) UnmarshalBinary(ba []byte) error {
if ba == nil {
return errors.New("nil byte array")
}
nh := &sequence{}
err := nh.fromByteArray(ba[16:])
if err != nil {
return fmt.Errorf("failed to deserialize head: %v", err)
}
h.head = nh
h.bits = binary.BigEndian.Uint64(ba[0:8])
h.unselected = binary.BigEndian.Uint64(ba[8:16])
return nil
}
// Bits returns the length of the bit sequence
func (h *Bitmap) Bits() uint64 {
return h.bits
}
// Unselected returns the number of bits which are not selected
func (h *Bitmap) Unselected() uint64 {
return h.unselected
}
func (h *Bitmap) String() string {
return fmt.Sprintf("Bits: %d, Unselected: %d, Sequence: %s Curr:%d",
h.bits, h.unselected, h.head.toString(), h.curr)
}
// MarshalJSON encodes h into a JSON message
func (h *Bitmap) MarshalJSON() ([]byte, error) {
b, err := h.MarshalBinary()
if err != nil {
return nil, err
}
return json.Marshal(b)
}
// UnmarshalJSON decodes JSON message into h
func (h *Bitmap) UnmarshalJSON(data []byte) error {
var b []byte
if err := json.Unmarshal(data, &b); err != nil {
return err
}
return h.UnmarshalBinary(b)
}
// getFirstAvailable looks for the first unset bit in passed mask starting from start
func getFirstAvailable(head *sequence, start uint64) (uint64, uint64, error) {
// Find sequence which contains the start bit
byteStart, bitStart := ordinalToPos(start)
current, _, precBlocks, inBlockBytePos := findSequence(head, byteStart)
// Derive the this sequence offsets
byteOffset := byteStart - inBlockBytePos
bitOffset := inBlockBytePos*8 + bitStart
for current != nil {
if current.block != blockMAX {
// If the current block is not full, check if there is any bit
// from the current bit in the current block. If not, before proceeding to the
// next block node, make sure we check for available bit in the next
// instance of the same block. Due to RLE same block signature will be
// compressed.
retry:
bytePos, bitPos, err := current.getAvailableBit(bitOffset)
if err != nil && precBlocks == current.count-1 {
// This is the last instance in the same block node,
// so move to the next block.
goto next
}
if err != nil {
// There are some more instances of the same block, so add the offset
// and be optimistic that you will find the available bit in the next
// instance of the same block.
bitOffset = 0
byteOffset += blockBytes
precBlocks++
goto retry
}
return byteOffset + bytePos, bitPos, err
}
// Moving to next block: Reset bit offset.
next:
bitOffset = 0
byteOffset += (current.count * blockBytes) - (precBlocks * blockBytes)
precBlocks = 0
current = current.next
}
return invalidPos, invalidPos, ErrNoBitAvailable
}
// getAvailableFromCurrent will look for available ordinal from the current ordinal.
// If none found then it will loop back to the start to check of the available bit.
// This can be further optimized to check from start till curr in case of a rollover
func getAvailableFromCurrent(head *sequence, start, curr, end uint64) (uint64, uint64, error) {
var bytePos, bitPos uint64
var err error
if curr != 0 && curr > start {
bytePos, bitPos, err = getFirstAvailable(head, curr)
ret := posToOrdinal(bytePos, bitPos)
if end < ret || err != nil {
goto begin
}
return bytePos, bitPos, nil
}
begin:
bytePos, bitPos, err = getFirstAvailable(head, start)
ret := posToOrdinal(bytePos, bitPos)
if end < ret || err != nil {
return invalidPos, invalidPos, ErrNoBitAvailable
}
return bytePos, bitPos, nil
}
// checkIfAvailable checks if the bit correspondent to the specified ordinal is unset
// If the ordinal is beyond the sequence limits, a negative response is returned
func checkIfAvailable(head *sequence, ordinal uint64) (uint64, uint64, error) {
bytePos, bitPos := ordinalToPos(ordinal)
// Find the sequence containing this byte
current, _, _, inBlockBytePos := findSequence(head, bytePos)
if current != nil {
// Check whether the bit corresponding to the ordinal address is unset
bitSel := blockFirstBit >> (inBlockBytePos*8 + bitPos)
if current.block&bitSel == 0 {
return bytePos, bitPos, nil
}
}
return invalidPos, invalidPos, ErrBitAllocated
}
// Given the byte position and the sequences list head, return the pointer to the
// sequence containing the byte (current), the pointer to the previous sequence,
// the number of blocks preceding the block containing the byte inside the current sequence.
// If bytePos is outside of the list, function will return (nil, nil, 0, invalidPos)
func findSequence(head *sequence, bytePos uint64) (*sequence, *sequence, uint64, uint64) {
// Find the sequence containing this byte
previous := head
current := head
n := bytePos
for current.next != nil && n >= (current.count*blockBytes) { // Nil check for less than 32 addresses masks
n -= (current.count * blockBytes)
previous = current
current = current.next
}
// If byte is outside of the list, let caller know
if n >= (current.count * blockBytes) {
return nil, nil, 0, invalidPos
}
// Find the byte position inside the block and the number of blocks
// preceding the block containing the byte inside this sequence
precBlocks := n / blockBytes
inBlockBytePos := bytePos % blockBytes
return current, previous, precBlocks, inBlockBytePos
}
// PushReservation pushes the bit reservation inside the bitmask.
// Given byte and bit positions, identify the sequence (current) which holds the block containing the affected bit.
// Create a new block with the modified bit according to the operation (allocate/release).
// Create a new sequence containing the new block and insert it in the proper position.
// Remove current sequence if empty.
// Check if new sequence can be merged with neighbour (previous/next) sequences.
//
// Identify "current" sequence containing block:
//
// [prev seq] [current seq] [next seq]
//
// Based on block position, resulting list of sequences can be any of three forms:
//
// block position Resulting list of sequences
//
// A) block is first in current: [prev seq] [new] [modified current seq] [next seq]
// B) block is last in current: [prev seq] [modified current seq] [new] [next seq]
// C) block is in the middle of current: [prev seq] [curr pre] [new] [curr post] [next seq]
func pushReservation(bytePos, bitPos uint64, head *sequence, release bool) *sequence {
// Store list's head
newHead := head
// Find the sequence containing this byte
current, previous, precBlocks, inBlockBytePos := findSequence(head, bytePos)
if current == nil {
return newHead
}
// Construct updated block
bitSel := blockFirstBit >> (inBlockBytePos*8 + bitPos)
newBlock := current.block
if release {
newBlock &^= bitSel
} else {
newBlock |= bitSel
}
// Quit if it was a redundant request
if current.block == newBlock {
return newHead
}
// Current sequence inevitably looses one block, upadate count
current.count--
// Create new sequence
newSequence := &sequence{block: newBlock, count: 1}
// Insert the new sequence in the list based on block position
if precBlocks == 0 { // First in sequence (A)
newSequence.next = current
if current == head {
newHead = newSequence
previous = newHead
} else {
previous.next = newSequence
}
removeCurrentIfEmpty(&newHead, newSequence, current)
mergeSequences(previous)
} else if precBlocks == current.count { // Last in sequence (B)
newSequence.next = current.next
current.next = newSequence
mergeSequences(current)
} else { // In between the sequence (C)
currPre := &sequence{block: current.block, count: precBlocks, next: newSequence}
currPost := current
currPost.count -= precBlocks
newSequence.next = currPost
if currPost == head {
newHead = currPre
} else {
previous.next = currPre
}
// No merging or empty current possible here
}
return newHead
}
// Removes the current sequence from the list if empty, adjusting the head pointer if needed
func removeCurrentIfEmpty(head **sequence, previous, current *sequence) {
if current.count == 0 {
if current == *head {
*head = current.next
} else {
previous.next = current.next
}
}
}
// Given a pointer to a sequence, it checks if it can be merged with any following sequences
// It stops when no more merging is possible.
// TODO: Optimization: only attempt merge from start to end sequence, no need to scan till the end of the list
func mergeSequences(seq *sequence) {
if seq != nil {
// Merge all what possible from seq
for seq.next != nil && seq.block == seq.next.block {
seq.count += seq.next.count
seq.next = seq.next.next
}
// Move to next
mergeSequences(seq.next)
}
}
func getNumBlocks(numBits uint64) uint64 {
numBlocks := numBits / uint64(blockLen)
if numBits%uint64(blockLen) != 0 {
numBlocks++
}
return numBlocks
}
func ordinalToPos(ordinal uint64) (uint64, uint64) {
return ordinal / 8, ordinal % 8
}
func posToOrdinal(bytePos, bitPos uint64) uint64 {
return bytePos*8 + bitPos
}