client | ||
docker | ||
dockerd | ||
fake | ||
future | ||
image | ||
puppet | ||
rcli | ||
server | ||
.gitignore | ||
container.go | ||
container_test.go | ||
docker.go | ||
docker_test.go | ||
filesystem.go | ||
filesystem_test.go | ||
LICENSE | ||
lxc_template.go | ||
mount_darwin.go | ||
mount_linux.go | ||
network.go | ||
network_test.go | ||
NOTICE | ||
README.md | ||
state.go | ||
sysinit.go | ||
utils.go | ||
utils_test.go | ||
Vagrantfile |
Docker is a process manager with superpowers
It encapsulates heterogeneous payloads in Standard Containers, and runs them on any server with strong guarantees of isolation and repeatability.
Is is a great building block for automating distributed systems: large-scale web deployments, database clusters, continuous deployment systems, private PaaS, service-oriented architectures, etc.
-
Heterogeneous payloads: any combination of binaries, libraries, configuration files, scripts, virtualenvs, jars, gems, tarballs, you name it. No more juggling between domain-specific tools. Docker can deploy and run them all.
-
Any server: docker can run on any x64 machine with a modern linux kernel - whether it's a laptop, a bare metal server or a VM. This makes it perfect for multi-cloud deployments.
-
Isolation: docker isolates processes from each other and from the underlying host, using lightweight containers.
-
Repeatability: because containers are isolated in their own filesystem, they behave the same regardless of where, when, and alongside what they run.
Notable features
-
Filesystem isolation: each process container runs in a completely separate root filesystem.
-
Resource isolation: system resources like cpu and memory can be allocated differently to each process container, using cgroups.
-
Network isolation: each process container runs in its own network namespace, with a virtual interface and IP address of its own (COMING SOON)
-
Copy-on-write: root filesystems are created using copy-on-write, which makes deployment extremeley fast, memory-cheap and disk-cheap.
-
Logging: the standard streams (stdout/stderr/stdin) of each process container is collected and logged for real-time or batch retrieval.
-
Change management: changes to a container's filesystem can be committed into a new image and re-used to create more containers. No templating or manual configuration required.
-
Interactive shell: docker can allocate a pseudo-tty and attach to the standard input of any container, for example to run a throaway interactive shell.
What is a Standard Container?
Docker defines a unit of software delivery called a Standard Container. The goal of a Standard Container is to encapsulate a software component and all its dependencies in a format that is self-describing and portable, so that any compliant runtime can run it without extra dependency, regardless of the underlying machine and the contents of the container.
The spec for Standard Containers is currently work in progress, but it is very straightforward. It mostly defines 1) an image format, 2) a set of standard operations, and 3) an execution environment.
A great analogy for this is the shipping container. Just like Standard Containers are a fundamental unit of software delivery, shipping containers (http://bricks.argz.com/ins/7823-1/12) are a fundamental unit of physical delivery.
1. STANDARD OPERATIONS
Just like shipping containers, Standard Containers define a set of STANDARD OPERATIONS. Shipping containers can be lifted, stacked, locked, loaded, unloaded and labelled. Similarly, standard containers can be started, stopped, copied, snapshotted, downloaded, uploaded and tagged.
2. CONTENT-AGNOSTIC
Just like shipping containers, Standard Containers are CONTENT-AGNOSTIC: all standard operations have the same effect regardless of the contents. A shipping container will be stacked in exactly the same way whether it contains Vietnamese powder coffe or spare Maserati parts. Similarly, Standard Containers are started or uploaded in the same way whether they contain a postgres database, a php application with its dependencies and application server, or Java build artifacts.
3. INFRASTRUCTURE-AGNOSTIC
Both types of containers are INFRASTRUCTURE-AGNOSTIC: they can be transported to thousands of facilities around the world, and manipulated by a wide variety of equipment. A shipping container can be packed in a factory in Ukraine, transported by truck to the nearest routing center, stacked onto a train, loaded into a German boat by an Australian-built crane, stored in a warehouse at a US facility, etc. Similarly, a standard container can be bundled on my laptop, uploaded to S3, downloaded, run and snapshotted by a build server at Equinix in Virginia, uploaded to 10 staging servers in a home-made Openstack cluster, then sent to 30 production instances across 3 EC2 regions.
4. DESIGNED FOR AUTOMATION
Because they offer the same standard operations regardless of content and infrastructure, Standard Containers, just like their physical counterpart, are extremely well-suited for automation. In fact, you could say automation is their secret weapon.
Many things that once required time-consuming and error-prone human effort can now be programmed. Before shipping containers, a bag of powder coffee was hauled, dragged, dropped, rolled and stacked by 10 different people in 10 different locations by the time it reached its destination. 1 out of 50 disappeared. 1 out of 20 was damaged. The process was slow, inefficient and cost a fortune - and was entirely different depending on the facility and the type of goods.
Similarly, before Standard Containers, by the time a software component ran in production, it had been individually built, configured, bundled, documented, patched, vendored, templated, tweaked and instrumented by 10 different people on 10 different computers. Builds failed, libraries conflicted, mirrors crashed, post-it notes were lost, logs were misplaced, cluster updates were half-broken. The process was slow, inefficient and cost a fortune - and was entirely different depending on the language and infrastructure provider.
5. INDUSTRIAL-GRADE DELIVERY
There are 17 million shipping containers in existence, packed with every physical good imaginable. Every single one of them can be loaded on the same boats, by the same cranes, in the same facilities, and sent anywhere in the World with incredible efficiency. It is embarrassing to think that a 30 ton shipment of coffee can safely travel half-way across the World in less time than it takes a software team to deliver its code from one datacenter to another sitting 10 miles away.
With Standard Containers we can put an end to that embarrassment, by making INDUSTRIAL-GRADE DELIVERY of software a reality.
Under the hood
Under the hood, Docker is built on the following components:
-
The cgroup and namespacing capabilities of the Linux kernel;
-
AUFS, a powerful union filesystem with copy-on-write capabilities;
-
The Go programming language;
-
lxc, a set of convenience scripts to simplify the creation of linux containers.
Standard Container Specification
(TODO)
Image format
Standard operations
- Copy
- Run
- Stop
- Wait
- Commit
- Attach standard streams
- List filesystem changes
- ...
Execution environment
Root filesystem
Environment variables
Process arguments
Networking
Process namespacing
Resource limits
Process monitoring
Logging
Signals
Pseudo-terminal allocation
Security
Setup instructions
Supported hosts
Right now, the officially supported hosts are:
- Ubuntu 12.10 (quantal)
Hosts that might work with slight kernel modifications, but are not officially supported:
- Ubuntu 12.04 (precise)
Step by step host setup
-
Set up your host of choice on a physical / virtual machine
-
Assume root identity on your newly installed environment (
sudo -s
) -
Type the following commands:
apt-get update apt-get install lxc wget debootstrap --arch=amd64 quantal /var/lib/docker/images/ubuntu/
-
Download the latest version of the docker binaries (
wget https://dl.dropbox.com/u/20637798/docker.tar.gz
) -
Extract the contents of the tar file
tar -xf docker.tar.gz
-
Launch the docker daemon
./dockerd
Client installation
- Download the latest version of the docker binaries (
wget https://dl.dropbox.com/u/20637798/docker.tar.gz
) - Extract the contents of the tar file
tar -xf docker.tar.gz
- You can now use the docker client binary
./docker
. Consider adding it to yourPATH
for simplicity.
Vagrant Usage
- Install Vagrant from http://vagrantup.com
- Run
vagrant up
. This will take a few minutes as it does the following:- Download Quantal64 base box
- Kick off Puppet to do:
- Download & untar most recent docker binary tarball to vagrant homedir.
- Debootstrap to /var/lib/docker/images/ubuntu.
- Install & run dockerd as service.
- Put docker in /usr/local/bin.
- Put latest Go toolchain in /usr/local/go.
Sample run output:
$ vagrant up
[default] Importing base box 'quantal64'...
[default] Matching MAC address for NAT networking...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/quantal64.pp...
stdin: is not a tty
notice: /Stage[main]//Node[default]/Exec[apt_update]/returns: executed successfully
notice: /Stage[main]/Docker/Exec[fetch-docker]/returns: executed successfully
notice: /Stage[main]/Docker/Package[lxc]/ensure: ensure changed 'purged' to 'present'
notice: /Stage[main]/Docker/Exec[fetch-go]/returns: executed successfully
notice: /Stage[main]/Docker/Exec[copy-docker-bin]/returns: executed successfully
notice: /Stage[main]/Docker/Exec[debootstrap]/returns: executed successfully
notice: /Stage[main]/Docker/File[/etc/init/dockerd.conf]/ensure: defined content as '{md5}78a593d38dd9919af14d8f0545ac95e9'
notice: /Stage[main]/Docker/Service[dockerd]/ensure: ensure changed 'stopped' to 'running'
notice: Finished catalog run in 329.74 seconds
When this has successfully completed, you should be able to get into your new system with vagrant ssh
and use docker
:
$ vagrant ssh
Welcome to Ubuntu 12.10 (GNU/Linux 3.5.0-17-generic x86_64)
* Documentation: https://help.ubuntu.com/
Last login: Sun Feb 3 19:37:37 2013
vagrant@vagrant-ubuntu-12:~$ DOCKER=localhost:4242 docker help
Usage: docker COMMAND [arg...]
A self-sufficient runtime for linux containers.
Commands:
run Run a command in a container
ps Display a list of containers
pull Download a tarball and create a container from it
put Upload a tarball and create a container from it
rm Remove containers
wait Wait for the state of a container to change
stop Stop a running container
logs Fetch the logs of a container
diff Inspect changes on a container's filesystem
commit Save the state of a container
attach Attach to the standard inputs and outputs of a running container
info Display system-wide information
tar Stream the contents of a container as a tar archive
web Generate a web UI
attach Attach to a running container