d21d0884ae
The bbolt library wants exclusive access to the boltdb file and uses file locking to assure that is the case. The controller and each network driver that needs persistent storage instantiates its own unique datastore instance, backed by the same boltdb file. The boltdb kvstore implementation works around multiple access to the same boltdb file by aggressively closing the boltdb file between each transaction. This is very inefficient. Have the controller pass its datastore instance into the drivers and enable the PersistConnection option to disable closing the boltdb between transactions. Set data-dir in unit tests which instantiate libnetwork controllers so they don't hang trying to lock the default boltdb database file. Signed-off-by: Cory Snider <csnider@mirantis.com>
178 lines
4.6 KiB
Go
178 lines
4.6 KiB
Go
//go:build !windows
|
|
|
|
package libnetwork
|
|
|
|
import (
|
|
"net"
|
|
"testing"
|
|
|
|
"github.com/docker/docker/internal/testutils/netnsutils"
|
|
"github.com/miekg/dns"
|
|
)
|
|
|
|
// test only works on linux
|
|
func TestDNSIPQuery(t *testing.T) {
|
|
defer netnsutils.SetupTestOSContext(t)()
|
|
c, err := New(OptionBoltdbWithRandomDBFile(t))
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer c.Stop()
|
|
|
|
n, err := c.NewNetwork("bridge", "dtnet1", "", nil)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer func() {
|
|
if err := n.Delete(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}()
|
|
|
|
ep, err := n.CreateEndpoint("testep")
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
sb, err := c.NewSandbox("c1")
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
defer func() {
|
|
if err := sb.Delete(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}()
|
|
|
|
// we need the endpoint only to populate ep_list for the sandbox as part of resolve_name
|
|
// it is not set as a target for name resolution and does not serve any other purpose
|
|
err = ep.Join(sb)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// add service records which are used to resolve names. These are the real targets for the DNS querries
|
|
n.addSvcRecords("ep1", "name1", "svc1", net.ParseIP("192.168.0.1"), net.IP{}, true, "test")
|
|
|
|
w := new(tstwriter)
|
|
// the unit tests right now will focus on non-proxyed DNS requests
|
|
r := NewResolver(resolverIPSandbox, false, sb)
|
|
|
|
// test name1's IP is resolved correctly with the default A type query
|
|
// Also make sure DNS lookups are case insensitive
|
|
names := []string{"name1.", "NaMe1."}
|
|
for _, name := range names {
|
|
q := new(dns.Msg)
|
|
q.SetQuestion(name, dns.TypeA)
|
|
r.serveDNS(w, q)
|
|
resp := w.GetResponse()
|
|
checkNonNullResponse(t, resp)
|
|
t.Log("Response: ", resp.String())
|
|
checkDNSResponseCode(t, resp, dns.RcodeSuccess)
|
|
checkDNSAnswersCount(t, resp, 1)
|
|
checkDNSRRType(t, resp.Answer[0].Header().Rrtype, dns.TypeA)
|
|
if answer, ok := resp.Answer[0].(*dns.A); ok {
|
|
if !answer.A.Equal(net.ParseIP("192.168.0.1")) {
|
|
t.Fatalf("IP response in Answer %v does not match 192.168.0.1", answer.A)
|
|
}
|
|
} else {
|
|
t.Fatal("Answer of type A not found")
|
|
}
|
|
w.ClearResponse()
|
|
}
|
|
|
|
// test MX query with name1 results in Success response with 0 answer records
|
|
q := new(dns.Msg)
|
|
q.SetQuestion("name1.", dns.TypeMX)
|
|
r.serveDNS(w, q)
|
|
resp := w.GetResponse()
|
|
checkNonNullResponse(t, resp)
|
|
t.Log("Response: ", resp.String())
|
|
checkDNSResponseCode(t, resp, dns.RcodeSuccess)
|
|
checkDNSAnswersCount(t, resp, 0)
|
|
w.ClearResponse()
|
|
|
|
// test MX query with non existent name results in ServFail response with 0 answer records
|
|
// since this is a unit test env, we disable proxying DNS above which results in ServFail rather than NXDOMAIN
|
|
q = new(dns.Msg)
|
|
q.SetQuestion("nonexistent.", dns.TypeMX)
|
|
r.serveDNS(w, q)
|
|
resp = w.GetResponse()
|
|
checkNonNullResponse(t, resp)
|
|
t.Log("Response: ", resp.String())
|
|
checkDNSResponseCode(t, resp, dns.RcodeServerFailure)
|
|
w.ClearResponse()
|
|
}
|
|
|
|
// test only works on linux
|
|
func TestDNSProxyServFail(t *testing.T) {
|
|
osctx := netnsutils.SetupTestOSContextEx(t)
|
|
defer osctx.Cleanup(t)
|
|
|
|
c, err := New(OptionBoltdbWithRandomDBFile(t))
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer c.Stop()
|
|
|
|
n, err := c.NewNetwork("bridge", "dtnet2", "", nil)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer func() {
|
|
if err := n.Delete(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}()
|
|
|
|
sb, err := c.NewSandbox("c1")
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
defer func() {
|
|
if err := sb.Delete(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}()
|
|
|
|
var nRequests int
|
|
// initialize a local DNS server and configure it to fail the first query
|
|
dns.HandleFunc(".", newDNSHandlerServFailOnce(&nRequests))
|
|
// use TCP for predictable results. Connection tests (to figure out DNS server initialization) don't work with UDP
|
|
server := &dns.Server{Addr: "127.0.0.1:53", Net: "tcp"}
|
|
srvErrCh := make(chan error, 1)
|
|
osctx.Go(t, func() {
|
|
srvErrCh <- server.ListenAndServe()
|
|
})
|
|
defer func() {
|
|
server.Shutdown() //nolint:errcheck
|
|
if err := <-srvErrCh; err != nil {
|
|
t.Error(err)
|
|
}
|
|
}()
|
|
|
|
waitForLocalDNSServer(t)
|
|
t.Log("DNS Server can be reached")
|
|
|
|
w := new(tstwriter)
|
|
r := NewResolver(resolverIPSandbox, true, sb)
|
|
q := new(dns.Msg)
|
|
q.SetQuestion("name1.", dns.TypeA)
|
|
|
|
var localDNSEntries []extDNSEntry
|
|
extTestDNSEntry := extDNSEntry{IPStr: "127.0.0.1", HostLoopback: true}
|
|
|
|
// configure two external DNS entries and point both to local DNS server thread
|
|
localDNSEntries = append(localDNSEntries, extTestDNSEntry)
|
|
localDNSEntries = append(localDNSEntries, extTestDNSEntry)
|
|
|
|
// this should generate two requests: the first will fail leading to a retry
|
|
r.SetExtServers(localDNSEntries)
|
|
r.serveDNS(w, q)
|
|
if nRequests != 2 {
|
|
t.Fatalf("Expected 2 DNS querries. Found: %d", nRequests)
|
|
}
|
|
t.Logf("Expected number of DNS requests generated")
|
|
}
|