Includes a fix for CVE-2023-29409
go1.20.7 (released 2023-08-01) includes a security fix to the crypto/tls
package, as well as bug fixes to the assembler and the compiler. See the
Go 1.20.7 milestone on our issue tracker for details:
- https://github.com/golang/go/issues?q=milestone%3AGo1.20.7+label%3ACherryPickApproved
- full diff: https://github.com/golang/go/compare/go1.20.6...go1.20.7
From the mailing list announcement:
[security] Go 1.20.7 and Go 1.19.12 are released
Hello gophers,
We have just released Go versions 1.20.7 and 1.19.12, minor point releases.
These minor releases include 1 security fixes following the security policy:
- crypto/tls: restrict RSA keys in certificates to <= 8192 bits
Extremely large RSA keys in certificate chains can cause a client/server
to expend significant CPU time verifying signatures. Limit this by
restricting the size of RSA keys transmitted during handshakes to <=
8192 bits.
Based on a survey of publicly trusted RSA keys, there are currently only
three certificates in circulation with keys larger than this, and all
three appear to be test certificates that are not actively deployed. It
is possible there are larger keys in use in private PKIs, but we target
the web PKI, so causing breakage here in the interests of increasing the
default safety of users of crypto/tls seems reasonable.
Thanks to Mateusz Poliwczak for reporting this issue.
View the release notes for more information:
https://go.dev/doc/devel/release#go1.20.7
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit d5cb7cdeae)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
go1.20.6 (released 2023-07-11) includes a security fix to the net/http package,
as well as bug fixes to the compiler, cgo, the cover tool, the go command,
the runtime, and the crypto/ecdsa, go/build, go/printer, net/mail, and text/template
packages. See the Go 1.20.6 milestone on our issue tracker for details.
https://github.com/golang/go/issues?q=milestone%3AGo1.20.6+label%3ACherryPickApproved
Full diff: https://github.com/golang/go/compare/go1.20.5...go1.20.6
These minor releases include 1 security fixes following the security policy:
net/http: insufficient sanitization of Host header
The HTTP/1 client did not fully validate the contents of the Host header.
A maliciously crafted Host header could inject additional headers or entire
requests. The HTTP/1 client now refuses to send requests containing an
invalid Request.Host or Request.URL.Host value.
Thanks to Bartek Nowotarski for reporting this issue.
Includes security fixes for [CVE-2023-29406 ][1] and Go issue https://go.dev/issue/60374
[1]: https://github.com/advisories/GHSA-f8f7-69v5-w4vx
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 1ead2dd35d)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
CI failed sometimes if no daemon.json was present:
Run sudo rm /etc/docker/daemon.json
sudo rm /etc/docker/daemon.json
sudo service docker restart
docker version
docker info
shell: /usr/bin/bash -e {0}
env:
DESTDIR: ./build
BUILDKIT_REPO: moby/buildkit
BUILDKIT_TEST_DISABLE_FEATURES: cache_backend_azblob,cache_backend_s3,merge_diff
BUILDKIT_REF: 798ad6b0ce9f2fe86dfb2b0277e6770d0b545871
rm: cannot remove '/etc/docker/daemon.json': No such file or directory
Error: Process completed with exit code 1.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 264dbad43a)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
I think this may be missing a sudo (as all other operations do use
sudo to access daemon.json);
Run if [ ! -e /etc/docker/daemon.json ]; then
if [ ! -e /etc/docker/daemon.json ]; then
echo '{}' | tee /etc/docker/daemon.json >/dev/null
fi
DOCKERD_CONFIG=$(jq '.+{"experimental":true,"live-restore":true,"ipv6":true,"fixed-cidr-v6":"2001:db8:1::/64"}' /etc/docker/daemon.json)
sudo tee /etc/docker/daemon.json <<<"$DOCKERD_CONFIG" >/dev/null
sudo service docker restart
shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0}
env:
GO_VERSION: 1.20.5
GOTESTLIST_VERSION: v0.3.1
TESTSTAT_VERSION: v0.1.3
ITG_CLI_MATRIX_SIZE: 6
DOCKER_EXPERIMENTAL: 1
DOCKER_GRAPHDRIVER: overlay2
tee: /etc/docker/daemon.json: Permission denied
Error: Process completed with exit code 1.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit d8bc5828cd)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
go1.20.5 (released 2023-06-06) includes four security fixes to the cmd/go and
runtime packages, as well as bug fixes to the compiler, the go command, the
runtime, and the crypto/rsa, net, and os packages. See the Go 1.20.5 milestone
on our issue tracker for details:
https://github.com/golang/go/issues?q=milestone%3AGo1.20.5+label%3ACherryPickApproved
full diff: https://github.com/golang/go/compare/go1.20.4...go1.20.5
These minor releases include 3 security fixes following the security policy:
- cmd/go: cgo code injection
The go command may generate unexpected code at build time when using cgo. This
may result in unexpected behavior when running a go program which uses cgo.
This may occur when running an untrusted module which contains directories with
newline characters in their names. Modules which are retrieved using the go command,
i.e. via "go get", are not affected (modules retrieved using GOPATH-mode, i.e.
GO111MODULE=off, may be affected).
Thanks to Juho Nurminen of Mattermost for reporting this issue.
This is CVE-2023-29402 and Go issue https://go.dev/issue/60167.
- runtime: unexpected behavior of setuid/setgid binaries
The Go runtime didn't act any differently when a binary had the setuid/setgid
bit set. On Unix platforms, if a setuid/setgid binary was executed with standard
I/O file descriptors closed, opening any files could result in unexpected
content being read/written with elevated prilieges. Similarly if a setuid/setgid
program was terminated, either via panic or signal, it could leak the contents
of its registers.
Thanks to Vincent Dehors from Synacktiv for reporting this issue.
This is CVE-2023-29403 and Go issue https://go.dev/issue/60272.
- cmd/go: improper sanitization of LDFLAGS
The go command may execute arbitrary code at build time when using cgo. This may
occur when running "go get" on a malicious module, or when running any other
command which builds untrusted code. This is can by triggered by linker flags,
specified via a "#cgo LDFLAGS" directive.
Thanks to Juho Nurminen of Mattermost for reporting this issue.
This is CVE-2023-29404 and CVE-2023-29405 and Go issues https://go.dev/issue/60305 and https://go.dev/issue/60306.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 98a44bb18e)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 24c882c3e0)
Signed-off-by: Cory Snider <csnider@mirantis.com>
go1.20.4 (released 2023-05-02) includes three security fixes to the html/template
package, as well as bug fixes to the compiler, the runtime, and the crypto/subtle,
crypto/tls, net/http, and syscall packages. See the Go 1.20.4 milestone on our
issue tracker for details:
https://github.com/golang/go/issues?q=milestone%3AGo1.20.4+label%3ACherryPickApproved
release notes: https://go.dev/doc/devel/release#go1.20.4
full diff: https://github.com/golang/go/compare/go1.20.3...go1.20.4
from the announcement:
> These minor releases include 3 security fixes following the security policy:
>
> - html/template: improper sanitization of CSS values
>
> Angle brackets (`<>`) were not considered dangerous characters when inserted
> into CSS contexts. Templates containing multiple actions separated by a '/'
> character could result in unexpectedly closing the CSS context and allowing
> for injection of unexpected HMTL, if executed with untrusted input.
>
> Thanks to Juho Nurminen of Mattermost for reporting this issue.
>
> This is CVE-2023-24539 and Go issue https://go.dev/issue/59720.
>
> - html/template: improper handling of JavaScript whitespace
>
> Not all valid JavaScript whitespace characters were considered to be
> whitespace. Templates containing whitespace characters outside of the character
> set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain
> actions may not be properly sanitized during execution.
>
> Thanks to Juho Nurminen of Mattermost for reporting this issue.
>
> This is CVE-2023-24540 and Go issue https://go.dev/issue/59721.
>
> - html/template: improper handling of empty HTML attributes
>
> Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}")
> executed with empty input could result in output that would have unexpected
> results when parsed due to HTML normalization rules. This may allow injection
> of arbitrary attributes into tags.
>
> Thanks to Juho Nurminen of Mattermost for reporting this issue.
>
> This is CVE-2023-29400 and Go issue https://go.dev/issue/59722.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit b7e8868235)
Signed-off-by: Cory Snider <csnider@mirantis.com>
go1.20.3 (released 2023-04-04) includes security fixes to the go/parser,
html/template, mime/multipart, net/http, and net/textproto packages, as well
as bug fixes to the compiler, the linker, the runtime, and the time package.
See the Go 1.20.3 milestone on our issue tracker for details:
https://github.com/golang/go/issues?q=milestone%3AGo1.20.3+label%3ACherryPickApproved
full diff: https://github.com/golang/go/compare/go1.20.2...go1.20.3
Further details from the announcement on the mailing list:
We have just released Go versions 1.20.3 and 1.19.8, minor point releases.
These minor releases include 4 security fixes following the security policy:
- go/parser: infinite loop in parsing
Calling any of the Parse functions on Go source code which contains `//line`
directives with very large line numbers can cause an infinite loop due to
integer overflow.
Thanks to Philippe Antoine (Catena cyber) for reporting this issue.
This is CVE-2023-24537 and Go issue https://go.dev/issue/59180.
- html/template: backticks not treated as string delimiters
Templates did not properly consider backticks (`) as Javascript string
delimiters, and as such did not escape them as expected. Backticks are
used, since ES6, for JS template literals. If a template contained a Go
template action within a Javascript template literal, the contents of the
action could be used to terminate the literal, injecting arbitrary Javascript
code into the Go template.
As ES6 template literals are rather complex, and themselves can do string
interpolation, we've decided to simply disallow Go template actions from being
used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe
way to allow this behavior. This takes the same approach as
github.com/google/safehtml. Template.Parse will now return an Error when it
encounters templates like this, with a currently unexported ErrorCode with a
value of 12. This ErrorCode will be exported in the next major release.
Users who rely on this behavior can re-enable it using the GODEBUG flag
jstmpllitinterp=1, with the caveat that backticks will now be escaped. This
should be used with caution.
Thanks to Sohom Datta, Manipal Institute of Technology, for reporting this issue.
This is CVE-2023-24538 and Go issue https://go.dev/issue/59234.
- net/http, net/textproto: denial of service from excessive memory allocation
HTTP and MIME header parsing could allocate large amounts of memory, even when
parsing small inputs.
Certain unusual patterns of input data could cause the common function used to
parse HTTP and MIME headers to allocate substantially more memory than
required to hold the parsed headers. An attacker can exploit this behavior to
cause an HTTP server to allocate large amounts of memory from a small request,
potentially leading to memory exhaustion and a denial of service.
Header parsing now correctly allocates only the memory required to hold parsed
headers.
Thanks to Jakob Ackermann (@das7pad) for discovering this issue.
This is CVE-2023-24534 and Go issue https://go.dev/issue/58975.
- net/http, net/textproto, mime/multipart: denial of service from excessive resource consumption
Multipart form parsing can consume large amounts of CPU and memory when
processing form inputs containing very large numbers of parts. This stems from
several causes:
mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form
can consume. ReadForm could undercount the amount of memory consumed, leading
it to accept larger inputs than intended. Limiting total memory does not
account for increased pressure on the garbage collector from large numbers of
small allocations in forms with many parts. ReadForm could allocate a large
number of short-lived buffers, further increasing pressure on the garbage
collector. The combination of these factors can permit an attacker to cause an
program that parses multipart forms to consume large amounts of CPU and
memory, potentially resulting in a denial of service. This affects programs
that use mime/multipart.Reader.ReadForm, as well as form parsing in the
net/http package with the Request methods FormFile, FormValue,
ParseMultipartForm, and PostFormValue.
ReadForm now does a better job of estimating the memory consumption of parsed
forms, and performs many fewer short-lived allocations.
In addition, mime/multipart.Reader now imposes the following limits on the
size of parsed forms:
Forms parsed with ReadForm may contain no more than 1000 parts. This limit may
be adjusted with the environment variable GODEBUG=multipartmaxparts=. Form
parts parsed with NextPart and NextRawPart may contain no more than 10,000
header fields. In addition, forms parsed with ReadForm may contain no more
than 10,000 header fields across all parts. This limit may be adjusted with
the environment variable GODEBUG=multipartmaxheaders=.
Thanks to Jakob Ackermann for discovering this issue.
This is CVE-2023-24536 and Go issue https://go.dev/issue/59153.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit f6cc8e3512)
Signed-off-by: Cory Snider <csnider@mirantis.com>
Includes a security fix for crypto/elliptic (CVE-2023-24532).
> go1.20.2 (released 2023-03-07) includes a security fix to the crypto/elliptic package,
> as well as bug fixes to the compiler, the covdata command, the linker, the runtime, and
> the crypto/ecdh, crypto/rsa, crypto/x509, os, and syscall packages.
> See the Go 1.20.2 milestone on our issue tracker for details.
https://go.dev/doc/devel/release#go1.20.minor
From the announcement:
> We have just released Go versions 1.20.2 and 1.19.7, minor point releases.
>
> These minor releases include 1 security fixes following the security policy:
>
> - crypto/elliptic: incorrect P-256 ScalarMult and ScalarBaseMult results
>
> The ScalarMult and ScalarBaseMult methods of the P256 Curve may return an
> incorrect result if called with some specific unreduced scalars (a scalar larger
> than the order of the curve).
>
> This does not impact usages of crypto/ecdsa or crypto/ecdh.
>
> This is CVE-2023-24532 and Go issue https://go.dev/issue/58647.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 02dec48bab)
Signed-off-by: Cory Snider <csnider@mirantis.com>
go1.19.10 (released 2023-06-06) includes four security fixes to the cmd/go and
runtime packages, as well as bug fixes to the compiler, the go command, and the
runtime. See the Go 1.19.10 milestone on our issue tracker for details:
https://github.com/golang/go/issues?q=milestone%3AGo1.19.10+label%3ACherryPickApproved
full diff: https://github.com/golang/go/compare/go1.19.9...go1.19.10
These minor releases include 3 security fixes following the security policy:
- cmd/go: cgo code injection
The go command may generate unexpected code at build time when using cgo. This
may result in unexpected behavior when running a go program which uses cgo.
This may occur when running an untrusted module which contains directories with
newline characters in their names. Modules which are retrieved using the go command,
i.e. via "go get", are not affected (modules retrieved using GOPATH-mode, i.e.
GO111MODULE=off, may be affected).
Thanks to Juho Nurminen of Mattermost for reporting this issue.
This is CVE-2023-29402 and Go issue https://go.dev/issue/60167.
- runtime: unexpected behavior of setuid/setgid binaries
The Go runtime didn't act any differently when a binary had the setuid/setgid
bit set. On Unix platforms, if a setuid/setgid binary was executed with standard
I/O file descriptors closed, opening any files could result in unexpected
content being read/written with elevated prilieges. Similarly if a setuid/setgid
program was terminated, either via panic or signal, it could leak the contents
of its registers.
Thanks to Vincent Dehors from Synacktiv for reporting this issue.
This is CVE-2023-29403 and Go issue https://go.dev/issue/60272.
- cmd/go: improper sanitization of LDFLAGS
The go command may execute arbitrary code at build time when using cgo. This may
occur when running "go get" on a malicious module, or when running any other
command which builds untrusted code. This is can by triggered by linker flags,
specified via a "#cgo LDFLAGS" directive.
Thanks to Juho Nurminen of Mattermost for reporting this issue.
This is CVE-2023-29404 and CVE-2023-29405 and Go issues https://go.dev/issue/60305 and https://go.dev/issue/60306.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
go1.19.9 (released 2023-05-02) includes three security fixes to the html/template
package, as well as bug fixes to the compiler, the runtime, and the crypto/tls
and syscall packages. See the Go 1.19.9 milestone on our issue tracker for details.
https://github.com/golang/go/issues?q=milestone%3AGo1.19.9+label%3ACherryPickApproved
release notes: https://go.dev/doc/devel/release#go1.19.9
full diff: https://github.com/golang/go/compare/go1.19.8...go1.19.9
from the announcement:
> These minor releases include 3 security fixes following the security policy:
>
>- html/template: improper sanitization of CSS values
>
> Angle brackets (`<>`) were not considered dangerous characters when inserted
> into CSS contexts. Templates containing multiple actions separated by a '/'
> character could result in unexpectedly closing the CSS context and allowing
> for injection of unexpected HMTL, if executed with untrusted input.
>
> Thanks to Juho Nurminen of Mattermost for reporting this issue.
>
> This is CVE-2023-24539 and Go issue https://go.dev/issue/59720.
>
> - html/template: improper handling of JavaScript whitespace
>
> Not all valid JavaScript whitespace characters were considered to be
> whitespace. Templates containing whitespace characters outside of the character
> set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain
> actions may not be properly sanitized during execution.
>
> Thanks to Juho Nurminen of Mattermost for reporting this issue.
>
> This is CVE-2023-24540 and Go issue https://go.dev/issue/59721.
>
> - html/template: improper handling of empty HTML attributes
>
> Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}")
> executed with empty input could result in output that would have unexpected
> results when parsed due to HTML normalization rules. This may allow injection
> of arbitrary attributes into tags.
>
> Thanks to Juho Nurminen of Mattermost for reporting this issue.
>
> This is CVE-2023-29400 and Go issue https://go.dev/issue/59722.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
go1.19.8 (released 2023-04-04) includes security fixes to the go/parser,
html/template, mime/multipart, net/http, and net/textproto packages, as well as
bug fixes to the linker, the runtime, and the time package. See the Go 1.19.8
milestone on our issue tracker for details:
https://github.com/golang/go/issues?q=milestone%3AGo1.19.8+label%3ACherryPickApproved
full diff: https://github.com/golang/go/compare/go1.19.7...go1.19.8
Further details from the announcement on the mailing list:
We have just released Go versions 1.20.3 and 1.19.8, minor point releases.
These minor releases include 4 security fixes following the security policy:
- go/parser: infinite loop in parsing
Calling any of the Parse functions on Go source code which contains `//line`
directives with very large line numbers can cause an infinite loop due to
integer overflow.
Thanks to Philippe Antoine (Catena cyber) for reporting this issue.
This is CVE-2023-24537 and Go issue https://go.dev/issue/59180.
- html/template: backticks not treated as string delimiters
Templates did not properly consider backticks (`) as Javascript string
delimiters, and as such did not escape them as expected. Backticks are
used, since ES6, for JS template literals. If a template contained a Go
template action within a Javascript template literal, the contents of the
action could be used to terminate the literal, injecting arbitrary Javascript
code into the Go template.
As ES6 template literals are rather complex, and themselves can do string
interpolation, we've decided to simply disallow Go template actions from being
used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe
way to allow this behavior. This takes the same approach as
github.com/google/safehtml. Template.Parse will now return an Error when it
encounters templates like this, with a currently unexported ErrorCode with a
value of 12. This ErrorCode will be exported in the next major release.
Users who rely on this behavior can re-enable it using the GODEBUG flag
jstmpllitinterp=1, with the caveat that backticks will now be escaped. This
should be used with caution.
Thanks to Sohom Datta, Manipal Institute of Technology, for reporting this issue.
This is CVE-2023-24538 and Go issue https://go.dev/issue/59234.
- net/http, net/textproto: denial of service from excessive memory allocation
HTTP and MIME header parsing could allocate large amounts of memory, even when
parsing small inputs.
Certain unusual patterns of input data could cause the common function used to
parse HTTP and MIME headers to allocate substantially more memory than
required to hold the parsed headers. An attacker can exploit this behavior to
cause an HTTP server to allocate large amounts of memory from a small request,
potentially leading to memory exhaustion and a denial of service.
Header parsing now correctly allocates only the memory required to hold parsed
headers.
Thanks to Jakob Ackermann (@das7pad) for discovering this issue.
This is CVE-2023-24534 and Go issue https://go.dev/issue/58975.
- net/http, net/textproto, mime/multipart: denial of service from excessive resource consumption
Multipart form parsing can consume large amounts of CPU and memory when
processing form inputs containing very large numbers of parts. This stems from
several causes:
mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form
can consume. ReadForm could undercount the amount of memory consumed, leading
it to accept larger inputs than intended. Limiting total memory does not
account for increased pressure on the garbage collector from large numbers of
small allocations in forms with many parts. ReadForm could allocate a large
number of short-lived buffers, further increasing pressure on the garbage
collector. The combination of these factors can permit an attacker to cause an
program that parses multipart forms to consume large amounts of CPU and
memory, potentially resulting in a denial of service. This affects programs
that use mime/multipart.Reader.ReadForm, as well as form parsing in the
net/http package with the Request methods FormFile, FormValue,
ParseMultipartForm, and PostFormValue.
ReadForm now does a better job of estimating the memory consumption of parsed
forms, and performs many fewer short-lived allocations.
In addition, mime/multipart.Reader now imposes the following limits on the
size of parsed forms:
Forms parsed with ReadForm may contain no more than 1000 parts. This limit may
be adjusted with the environment variable GODEBUG=multipartmaxparts=. Form
parts parsed with NextPart and NextRawPart may contain no more than 10,000
header fields. In addition, forms parsed with ReadForm may contain no more
than 10,000 header fields across all parts. This limit may be adjusted with
the environment variable GODEBUG=multipartmaxheaders=.
Thanks to Jakob Ackermann for discovering this issue.
This is CVE-2023-24536 and Go issue https://go.dev/issue/59153.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
Includes a security fix for crypto/elliptic (CVE-2023-24532).
> go1.19.7 (released 2023-03-07) includes a security fix to the crypto/elliptic
> package, as well as bug fixes to the linker, the runtime, and the crypto/x509
> and syscall packages. See the Go 1.19.7 milestone on our issue tracker for
> details.
https://go.dev/doc/devel/release#go1.19.minor
From the announcement:
> We have just released Go versions 1.20.2 and 1.19.7, minor point releases.
>
> These minor releases include 1 security fixes following the security policy:
>
> - crypto/elliptic: incorrect P-256 ScalarMult and ScalarBaseMult results
>
> The ScalarMult and ScalarBaseMult methods of the P256 Curve may return an
> incorrect result if called with some specific unreduced scalars (a scalar larger
> than the order of the curve).
>
> This does not impact usages of crypto/ecdsa or crypto/ecdh.
>
> This is CVE-2023-24532 and Go issue https://go.dev/issue/58647.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
go1.19.6 (released 2023-02-14) includes security fixes to the crypto/tls,
mime/multipart, net/http, and path/filepath packages, as well as bug fixes to
the go command, the linker, the runtime, and the crypto/x509, net/http, and
time packages. See the Go 1.19.6 milestone on our issue tracker for details:
https://github.com/golang/go/issues?q=milestone%3AGo1.19.6+label%3ACherryPickApproved
From the announcement on the security mailing:
We have just released Go versions 1.20.1 and 1.19.6, minor point releases.
These minor releases include 4 security fixes following the security policy:
- path/filepath: path traversal in filepath.Clean on Windows
On Windows, the filepath.Clean function could transform an invalid path such
as a/../c:/b into the valid path c:\b. This transformation of a relative (if
invalid) path into an absolute path could enable a directory traversal attack.
The filepath.Clean function will now transform this path into the relative
(but still invalid) path .\c:\b.
This is CVE-2022-41722 and Go issue https://go.dev/issue/57274.
- net/http, mime/multipart: denial of service from excessive resource
consumption
Multipart form parsing with mime/multipart.Reader.ReadForm can consume largely
unlimited amounts of memory and disk files. This also affects form parsing in
the net/http package with the Request methods FormFile, FormValue,
ParseMultipartForm, and PostFormValue.
ReadForm takes a maxMemory parameter, and is documented as storing "up to
maxMemory bytes +10MB (reserved for non-file parts) in memory". File parts
which cannot be stored in memory are stored on disk in temporary files. The
unconfigurable 10MB reserved for non-file parts is excessively large and can
potentially open a denial of service vector on its own. However, ReadForm did
not properly account for all memory consumed by a parsed form, such as map
ntry overhead, part names, and MIME headers, permitting a maliciously crafted
form to consume well over 10MB. In addition, ReadForm contained no limit on
the number of disk files created, permitting a relatively small request body
to create a large number of disk temporary files.
ReadForm now properly accounts for various forms of memory overhead, and
should now stay within its documented limit of 10MB + maxMemory bytes of
memory consumption. Users should still be aware that this limit is high and
may still be hazardous.
ReadForm now creates at most one on-disk temporary file, combining multiple
form parts into a single temporary file. The mime/multipart.File interface
type's documentation states, "If stored on disk, the File's underlying
concrete type will be an *os.File.". This is no longer the case when a form
contains more than one file part, due to this coalescing of parts into a
single file. The previous behavior of using distinct files for each form part
may be reenabled with the environment variable
GODEBUG=multipartfiles=distinct.
Users should be aware that multipart.ReadForm and the http.Request methods
that call it do not limit the amount of disk consumed by temporary files.
Callers can limit the size of form data with http.MaxBytesReader.
This is CVE-2022-41725 and Go issue https://go.dev/issue/58006.
- crypto/tls: large handshake records may cause panics
Both clients and servers may send large TLS handshake records which cause
servers and clients, respectively, to panic when attempting to construct
responses.
This affects all TLS 1.3 clients, TLS 1.2 clients which explicitly enable
session resumption (by setting Config.ClientSessionCache to a non-nil value),
and TLS 1.3 servers which request client certificates (by setting
Config.ClientAuth
> = RequestClientCert).
This is CVE-2022-41724 and Go issue https://go.dev/issue/58001.
- net/http: avoid quadratic complexity in HPACK decoding
A maliciously crafted HTTP/2 stream could cause excessive CPU consumption
in the HPACK decoder, sufficient to cause a denial of service from a small
number of small requests.
This issue is also fixed in golang.org/x/net/http2 v0.7.0, for users manually
configuring HTTP/2.
This is CVE-2022-41723 and Go issue https://go.dev/issue/57855.
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 94feb31516)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
Adds overrides with specific tests suites in our tests
matrix so we can reduce build time significantly.
Signed-off-by: CrazyMax <crazy-max@users.noreply.github.com>
(cherry picked from commit 22776f8fdb)
Adds smoke test stage in our Dockerfile and a
GitHub Action workflow
Signed-off-by: CrazyMax <crazy-max@users.noreply.github.com>
(cherry picked from commit 518be73a5c)
We still need a stage that build binaries and extra tools as well for
docker-ce-packaging repo: ff110508ff/static/Makefile (L41-L57)
This could be removed if we create a package for each project
like it's done in docker-packaging repo: https://github.com/docker/packaging/tree/main/pkg
Signed-off-by: CrazyMax <crazy-max@users.noreply.github.com>
(cherry picked from commit e8a82ed24d)
Keep the same output dir format in the bake definition
as the one used in make scripts.
Signed-off-by: CrazyMax <crazy-max@users.noreply.github.com>
(cherry picked from commit 9bcf5bed05)
Better support for cross compilation so we can fully rely
on `--platform` flag of buildx for a seamless integration.
This removes unnecessary extra cross logic in the Dockerfile,
DOCKER_CROSSPLATFORMS and CROSS vars and some hack scripts as well.
Non-sandboxed build invocation is still supported and dev stages
in the Dockerfile have been updated accordingly.
Bake definition and GitHub Actions workflows have been updated
accordingly as well.
Signed-off-by: CrazyMax <crazy-max@users.noreply.github.com>
(cherry picked from commit 8086f40123)
full diff: 0bfcd83e6d...d77361423c
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit c42b304f62)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
To make the local build environment more correct and consistent, we
should never leave an uncommitted go.mod in the tree; however, we need a
go.mod for certain commands to work properly. Use a wrapper script to
create and destroy the go.mod as needed instead of potentially changing
tooling behavior by leaving it.
If a go.mod already exists, this script will warn and call the wrapped
command with GO111MODULE=on.
Signed-off-by: Bjorn Neergaard <bneergaard@mirantis.com>
(cherry picked from commit a449f77774)
Signed-off-by: Bjorn Neergaard <bneergaard@mirantis.com>
Includes security fixes for net/http (CVE-2022-41717, CVE-2022-41720),
and os (CVE-2022-41720).
These minor releases include 2 security fixes following the security policy:
- os, net/http: avoid escapes from os.DirFS and http.Dir on Windows
The os.DirFS function and http.Dir type provide access to a tree of files
rooted at a given directory. These functions permitted access to Windows
device files under that root. For example, os.DirFS("C:/tmp").Open("COM1")
would open the COM1 device.
Both os.DirFS and http.Dir only provide read-only filesystem access.
In addition, on Windows, an os.DirFS for the directory \(the root of the
current drive) can permit a maliciously crafted path to escape from the
drive and access any path on the system.
The behavior of os.DirFS("") has changed. Previously, an empty root was
treated equivalently to "/", so os.DirFS("").Open("tmp") would open the
path "/tmp". This now returns an error.
This is CVE-2022-41720 and Go issue https://go.dev/issue/56694.
- net/http: limit canonical header cache by bytes, not entries
An attacker can cause excessive memory growth in a Go server accepting
HTTP/2 requests.
HTTP/2 server connections contain a cache of HTTP header keys sent by
the client. While the total number of entries in this cache is capped,
an attacker sending very large keys can cause the server to allocate
approximately 64 MiB per open connection.
This issue is also fixed in golang.org/x/net/http2 vX.Y.Z, for users
manually configuring HTTP/2.
Thanks to Josselin Costanzi for reporting this issue.
This is CVE-2022-41717 and Go issue https://go.dev/issue/56350.
View the release notes for more information:
https://go.dev/doc/devel/release#go1.19.4
And the milestone on the issue tracker:
https://github.com/golang/go/issues?q=milestone%3AGo1.19.4+label%3ACherryPickApproved
Full diff: https://github.com/golang/go/compare/go1.19.3...go1.19.4
The golang.org/x/net fix is in 1e63c2f08a
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 52bc1ad744)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
On Windows, syscall.StartProcess and os/exec.Cmd did not properly
check for invalid environment variable values. A malicious
environment variable value could exploit this behavior to set a
value for a different environment variable. For example, the
environment variable string "A=B\x00C=D" set the variables "A=B" and
"C=D".
Thanks to RyotaK (https://twitter.com/ryotkak) for reporting this
issue.
This is CVE-2022-41716 and Go issue https://go.dev/issue/56284.
This Go release also fixes https://github.com/golang/go/issues/56309, a
runtime bug which can cause random memory corruption when a goroutine
exits with runtime.LockOSThread() set. This fix is necessary to unblock
work to replace certain uses of pkg/reexec with unshared OS threads.
Signed-off-by: Cory Snider <csnider@mirantis.com>
(cherry picked from commit f9d4589976)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
GitHub uses these parameters to construct a name; removing the ./ prefix
to make them more readable (and add them back where it's used)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 0760c6f4e1)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
From the mailing list:
We have just released Go versions 1.19.2 and 1.18.7, minor point releases.
These minor releases include 3 security fixes following the security policy:
- archive/tar: unbounded memory consumption when reading headers
Reader.Read did not set a limit on the maximum size of file headers.
A maliciously crafted archive could cause Read to allocate unbounded
amounts of memory, potentially causing resource exhaustion or panics.
Reader.Read now limits the maximum size of header blocks to 1 MiB.
Thanks to Adam Korczynski (ADA Logics) and OSS-Fuzz for reporting this issue.
This is CVE-2022-2879 and Go issue https://go.dev/issue/54853.
- net/http/httputil: ReverseProxy should not forward unparseable query parameters
Requests forwarded by ReverseProxy included the raw query parameters from the
inbound request, including unparseable parameters rejected by net/http. This
could permit query parameter smuggling when a Go proxy forwards a parameter
with an unparseable value.
ReverseProxy will now sanitize the query parameters in the forwarded query
when the outbound request's Form field is set after the ReverseProxy.Director
function returns, indicating that the proxy has parsed the query parameters.
Proxies which do not parse query parameters continue to forward the original
query parameters unchanged.
Thanks to Gal Goldstein (Security Researcher, Oxeye) and
Daniel Abeles (Head of Research, Oxeye) for reporting this issue.
This is CVE-2022-2880 and Go issue https://go.dev/issue/54663.
- regexp/syntax: limit memory used by parsing regexps
The parsed regexp representation is linear in the size of the input,
but in some cases the constant factor can be as high as 40,000,
making relatively small regexps consume much larger amounts of memory.
Each regexp being parsed is now limited to a 256 MB memory footprint.
Regular expressions whose representation would use more space than that
are now rejected. Normal use of regular expressions is unaffected.
Thanks to Adam Korczynski (ADA Logics) and OSS-Fuzz for reporting this issue.
This is CVE-2022-41715 and Go issue https://go.dev/issue/55949.
View the release notes for more information: https://go.dev/doc/devel/release#go1.19.2
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
(cherry picked from commit 7b4e4c08b5)
Signed-off-by: Sebastiaan van Stijn <github@gone.nl>