vendor: github.com/opencontainers/selinux v1.6.0

full diff: https://github.com/opencontainers/selinux/compare/v1.5.2...v1.6.0

This also adds a new dependency: github.com/willf/bitset

Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
This commit is contained in:
Sebastiaan van Stijn 2020-08-31 15:20:51 +02:00
parent 7ae5222c72
commit 245f2d922a
No known key found for this signature in database
GPG key ID: 76698F39D527CE8C
21 changed files with 2032 additions and 300 deletions

View file

@ -169,7 +169,8 @@ github.com/morikuni/aec 39771216ff4c63d11f5e604076f9
# metrics
github.com/docker/go-metrics b619b3592b65de4f087d9f16863a7e6ff905973c # v0.0.1
github.com/opencontainers/selinux c688bba66d7ecb448819836b96f9c416da8b0746 # v1.5.2
github.com/opencontainers/selinux 25504e34a9826d481f6e2903963ecaa881749124 # v1.6.0
github.com/willf/bitset 559910e8471e48d76d9e5a1ba15842dee77ad45d # v1.1.11
# archive/tar

View file

@ -4,7 +4,11 @@
Common SELinux package used across the container ecosystem.
Please see the [godoc](https://godoc.org/github.com/opencontainers/selinux) for more information.
## Usage
When compiling consumers of this project, the `selinux` build tag must be used to enable selinux functionality.
For complete documentation, see [godoc](https://godoc.org/github.com/opencontainers/selinux).
## Code of Conduct

View file

@ -0,0 +1,21 @@
/*
Package selinux provides a high-level interface for interacting with selinux.
This package uses a selinux build tag to enable the selinux functionality. This
allows non-linux and linux users who do not have selinux support to still use
tools that rely on this library.
To compile with full selinux support use the -tags=selinux option in your build
and test commands.
Usage:
import "github.com/opencontainers/selinux/go-selinux"
// Ensure that selinux is enforcing mode.
if selinux.EnforceMode() != selinux.Enforcing {
selinux.SetEnforceMode(selinux.Enforcing)
}
*/
package selinux

View file

@ -73,9 +73,9 @@ func InitLabels(options []string) (plabel string, mlabel string, Err error) {
selinux.ReleaseLabel(processLabel)
}
processLabel = pcon.Get()
mountLabel = mcon.Get()
selinux.ReserveLabel(processLabel)
}
mountLabel = mcon.Get()
}
return processLabel, mountLabel, nil
}

View file

@ -30,7 +30,6 @@ func Relabel(path string, fileLabel string, shared bool) error {
// DisableSecOpt returns a security opt that can disable labeling
// support for future container processes
func DisableSecOpt() []string {
// TODO the selinux.DisableSecOpt stub returns []string{"disable"} instead of "nil"
return nil
}

View file

@ -0,0 +1,249 @@
package selinux
import (
"github.com/pkg/errors"
)
const (
// Enforcing constant indicate SELinux is in enforcing mode
Enforcing = 1
// Permissive constant to indicate SELinux is in permissive mode
Permissive = 0
// Disabled constant to indicate SELinux is disabled
Disabled = -1
// DefaultCategoryRange is the upper bound on the category range
DefaultCategoryRange = uint32(1024)
)
var (
// ErrMCSAlreadyExists is returned when trying to allocate a duplicate MCS.
ErrMCSAlreadyExists = errors.New("MCS label already exists")
// ErrEmptyPath is returned when an empty path has been specified.
ErrEmptyPath = errors.New("empty path")
// InvalidLabel is returned when an invalid label is specified.
InvalidLabel = errors.New("Invalid Label")
// ErrIncomparable is returned two levels are not comparable
ErrIncomparable = errors.New("incomparable levels")
// ErrLevelSyntax is returned when a sensitivity or category do not have correct syntax in a level
ErrLevelSyntax = errors.New("invalid level syntax")
// CategoryRange allows the upper bound on the category range to be adjusted
CategoryRange = DefaultCategoryRange
)
// Context is a representation of the SELinux label broken into 4 parts
type Context map[string]string
// SetDisabled disables SELinux support for the package
func SetDisabled() {
setDisabled()
}
// GetEnabled returns whether SELinux is currently enabled.
func GetEnabled() bool {
return getEnabled()
}
// ClassIndex returns the int index for an object class in the loaded policy,
// or -1 and an error
func ClassIndex(class string) (int, error) {
return classIndex(class)
}
// SetFileLabel sets the SELinux label for this path or returns an error.
func SetFileLabel(fpath string, label string) error {
return setFileLabel(fpath, label)
}
// FileLabel returns the SELinux label for this path or returns an error.
func FileLabel(fpath string) (string, error) {
return fileLabel(fpath)
}
// SetFSCreateLabel tells kernel the label to create all file system objects
// created by this task. Setting label="" to return to default.
func SetFSCreateLabel(label string) error {
return setFSCreateLabel(label)
}
// FSCreateLabel returns the default label the kernel which the kernel is using
// for file system objects created by this task. "" indicates default.
func FSCreateLabel() (string, error) {
return fsCreateLabel()
}
// CurrentLabel returns the SELinux label of the current process thread, or an error.
func CurrentLabel() (string, error) {
return currentLabel()
}
// PidLabel returns the SELinux label of the given pid, or an error.
func PidLabel(pid int) (string, error) {
return pidLabel(pid)
}
// ExecLabel returns the SELinux label that the kernel will use for any programs
// that are executed by the current process thread, or an error.
func ExecLabel() (string, error) {
return execLabel()
}
// CanonicalizeContext takes a context string and writes it to the kernel
// the function then returns the context that the kernel will use. Use this
// function to check if two contexts are equivalent
func CanonicalizeContext(val string) (string, error) {
return canonicalizeContext(val)
}
// ComputeCreateContext requests the type transition from source to target for
// class from the kernel.
func ComputeCreateContext(source string, target string, class string) (string, error) {
return computeCreateContext(source, target, class)
}
// CalculateGlbLub computes the glb (greatest lower bound) and lub (least upper bound)
// of a source and target range.
// The glblub is calculated as the greater of the low sensitivities and
// the lower of the high sensitivities and the and of each category bitset.
func CalculateGlbLub(sourceRange, targetRange string) (string, error) {
return calculateGlbLub(sourceRange, targetRange)
}
// SetExecLabel sets the SELinux label that the kernel will use for any programs
// that are executed by the current process thread, or an error.
func SetExecLabel(label string) error {
return setExecLabel(label)
}
// SetTaskLabel sets the SELinux label for the current thread, or an error.
// This requires the dyntransition permission.
func SetTaskLabel(label string) error {
return setTaskLabel(label)
}
// SetSocketLabel takes a process label and tells the kernel to assign the
// label to the next socket that gets created
func SetSocketLabel(label string) error {
return setSocketLabel(label)
}
// SocketLabel retrieves the current socket label setting
func SocketLabel() (string, error) {
return socketLabel()
}
// PeerLabel retrieves the label of the client on the other side of a socket
func PeerLabel(fd uintptr) (string, error) {
return peerLabel(fd)
}
// SetKeyLabel takes a process label and tells the kernel to assign the
// label to the next kernel keyring that gets created
func SetKeyLabel(label string) error {
return setKeyLabel(label)
}
// KeyLabel retrieves the current kernel keyring label setting
func KeyLabel() (string, error) {
return keyLabel()
}
// Get returns the Context as a string
func (c Context) Get() string {
return c.get()
}
// NewContext creates a new Context struct from the specified label
func NewContext(label string) (Context, error) {
return newContext(label)
}
// ClearLabels clears all reserved labels
func ClearLabels() {
clearLabels()
}
// ReserveLabel reserves the MLS/MCS level component of the specified label
func ReserveLabel(label string) {
reserveLabel(label)
}
// EnforceMode returns the current SELinux mode Enforcing, Permissive, Disabled
func EnforceMode() int {
return enforceMode()
}
// SetEnforceMode sets the current SELinux mode Enforcing, Permissive.
// Disabled is not valid, since this needs to be set at boot time.
func SetEnforceMode(mode int) error {
return setEnforceMode(mode)
}
// DefaultEnforceMode returns the systems default SELinux mode Enforcing,
// Permissive or Disabled. Note this is is just the default at boot time.
// EnforceMode tells you the systems current mode.
func DefaultEnforceMode() int {
return defaultEnforceMode()
}
// ReleaseLabel un-reserves the MLS/MCS Level field of the specified label,
// allowing it to be used by another process.
func ReleaseLabel(label string) {
releaseLabel(label)
}
// ROFileLabel returns the specified SELinux readonly file label
func ROFileLabel() string {
return roFileLabel()
}
// KVMContainerLabels returns the default processLabel and mountLabel to be used
// for kvm containers by the calling process.
func KVMContainerLabels() (string, string) {
return kvmContainerLabels()
}
// InitContainerLabels returns the default processLabel and file labels to be
// used for containers running an init system like systemd by the calling process.
func InitContainerLabels() (string, string) {
return initContainerLabels()
}
// ContainerLabels returns an allocated processLabel and fileLabel to be used for
// container labeling by the calling process.
func ContainerLabels() (processLabel string, fileLabel string) {
return containerLabels()
}
// SecurityCheckContext validates that the SELinux label is understood by the kernel
func SecurityCheckContext(val string) error {
return securityCheckContext(val)
}
// CopyLevel returns a label with the MLS/MCS level from src label replaced on
// the dest label.
func CopyLevel(src, dest string) (string, error) {
return copyLevel(src, dest)
}
// Chcon changes the fpath file object to the SELinux label label.
// If fpath is a directory and recurse is true, then Chcon walks the
// directory tree setting the label.
func Chcon(fpath string, label string, recurse bool) error {
return chcon(fpath, label, recurse)
}
// DupSecOpt takes an SELinux process label and returns security options that
// can be used to set the SELinux Type and Level for future container processes.
func DupSecOpt(src string) ([]string, error) {
return dupSecOpt(src)
}
// DisableSecOpt returns a security opt that can be used to disable SELinux
// labeling support for future container processes.
func DisableSecOpt() []string {
return disableSecOpt()
}

View file

@ -20,17 +20,12 @@ import (
"github.com/opencontainers/selinux/pkg/pwalk"
"github.com/pkg/errors"
"github.com/willf/bitset"
"golang.org/x/sys/unix"
)
const (
// Enforcing constant indicate SELinux is in enforcing mode
Enforcing = 1
// Permissive constant to indicate SELinux is in permissive mode
Permissive = 0
// Disabled constant to indicate SELinux is disabled
Disabled = -1
minSensLen = 2
contextFile = "/usr/share/containers/selinux/contexts"
selinuxDir = "/etc/selinux/"
selinuxConfig = selinuxDir + "config"
@ -49,17 +44,27 @@ type selinuxState struct {
sync.Mutex
}
var (
// ErrMCSAlreadyExists is returned when trying to allocate a duplicate MCS.
ErrMCSAlreadyExists = errors.New("MCS label already exists")
// ErrEmptyPath is returned when an empty path has been specified.
ErrEmptyPath = errors.New("empty path")
// InvalidLabel is returned when an invalid label is specified.
InvalidLabel = errors.New("Invalid Label")
type level struct {
sens uint
cats *bitset.BitSet
}
assignRegex = regexp.MustCompile(`^([^=]+)=(.*)$`)
roFileLabel string
state = selinuxState{
type mlsRange struct {
low *level
high *level
}
type levelItem byte
const (
sensitivity levelItem = 's'
category levelItem = 'c'
)
var (
assignRegex = regexp.MustCompile(`^([^=]+)=(.*)$`)
readOnlyFileLabel string
state = selinuxState{
mcsList: make(map[string]bool),
}
@ -68,9 +73,6 @@ var (
haveThreadSelf bool
)
// Context is a representation of the SELinux label broken into 4 parts
type Context map[string]string
func (s *selinuxState) setEnable(enabled bool) bool {
s.Lock()
defer s.Unlock()
@ -97,8 +99,8 @@ func (s *selinuxState) getEnabled() bool {
return s.setEnable(enabled)
}
// SetDisabled disables selinux support for the package
func SetDisabled() {
// setDisabled disables SELinux support for the package
func setDisabled() {
state.setEnable(false)
}
@ -190,15 +192,15 @@ func (s *selinuxState) getSELinuxfs() string {
// getSelinuxMountPoint returns the path to the mountpoint of an selinuxfs
// filesystem or an empty string if no mountpoint is found. Selinuxfs is
// a proc-like pseudo-filesystem that exposes the selinux policy API to
// a proc-like pseudo-filesystem that exposes the SELinux policy API to
// processes. The existence of an selinuxfs mount is used to determine
// whether selinux is currently enabled or not.
// whether SELinux is currently enabled or not.
func getSelinuxMountPoint() string {
return state.getSELinuxfs()
}
// GetEnabled returns whether selinux is currently enabled.
func GetEnabled() bool {
// getEnabled returns whether SELinux is currently enabled.
func getEnabled() bool {
return state.getEnabled()
}
@ -282,8 +284,9 @@ func readCon(fpath string) (string, error) {
return strings.Trim(retval, "\x00"), nil
}
// ClassIndex returns the int index for an object class in the loaded policy, or -1 and an error
func ClassIndex(class string) (int, error) {
// classIndex returns the int index for an object class in the loaded policy,
// or -1 and an error
func classIndex(class string) (int, error) {
permpath := fmt.Sprintf("class/%s/index", class)
indexpath := filepath.Join(getSelinuxMountPoint(), permpath)
@ -299,8 +302,8 @@ func ClassIndex(class string) (int, error) {
return index, nil
}
// SetFileLabel sets the SELinux label for this path or returns an error.
func SetFileLabel(fpath string, label string) error {
// setFileLabel sets the SELinux label for this path or returns an error.
func setFileLabel(fpath string, label string) error {
if fpath == "" {
return ErrEmptyPath
}
@ -310,8 +313,8 @@ func SetFileLabel(fpath string, label string) error {
return nil
}
// FileLabel returns the SELinux label for this path or returns an error.
func FileLabel(fpath string) (string, error) {
// fileLabel returns the SELinux label for this path or returns an error.
func fileLabel(fpath string) (string, error) {
if fpath == "" {
return "", ErrEmptyPath
}
@ -327,37 +330,31 @@ func FileLabel(fpath string) (string, error) {
return string(label), nil
}
/*
SetFSCreateLabel tells kernel the label to create all file system objects
created by this task. Setting label="" to return to default.
*/
func SetFSCreateLabel(label string) error {
// setFSCreateLabel tells kernel the label to create all file system objects
// created by this task. Setting label="" to return to default.
func setFSCreateLabel(label string) error {
return writeAttr("fscreate", label)
}
/*
FSCreateLabel returns the default label the kernel which the kernel is using
for file system objects created by this task. "" indicates default.
*/
func FSCreateLabel() (string, error) {
// fsCreateLabel returns the default label the kernel which the kernel is using
// for file system objects created by this task. "" indicates default.
func fsCreateLabel() (string, error) {
return readAttr("fscreate")
}
// CurrentLabel returns the SELinux label of the current process thread, or an error.
func CurrentLabel() (string, error) {
// currentLabel returns the SELinux label of the current process thread, or an error.
func currentLabel() (string, error) {
return readAttr("current")
}
// PidLabel returns the SELinux label of the given pid, or an error.
func PidLabel(pid int) (string, error) {
// pidLabel returns the SELinux label of the given pid, or an error.
func pidLabel(pid int) (string, error) {
return readCon(fmt.Sprintf("/proc/%d/attr/current", pid))
}
/*
ExecLabel returns the SELinux label that the kernel will use for any programs
that are executed by the current process thread, or an error.
*/
func ExecLabel() (string, error) {
// ExecLabel returns the SELinux label that the kernel will use for any programs
// that are executed by the current process thread, or an error.
func execLabel() (string, error) {
return readAttr("exec")
}
@ -366,7 +363,7 @@ func writeCon(fpath, val string) error {
return ErrEmptyPath
}
if val == "" {
if !GetEnabled() {
if !getEnabled() {
return nil
}
}
@ -418,20 +415,17 @@ func writeAttr(attr, val string) error {
return writeCon(attrPath(attr), val)
}
/*
CanonicalizeContext takes a context string and writes it to the kernel
the function then returns the context that the kernel will use. This function
can be used to see if two contexts are equivalent
*/
func CanonicalizeContext(val string) (string, error) {
// canonicalizeContext takes a context string and writes it to the kernel
// the function then returns the context that the kernel will use. Use this
// function to check if two contexts are equivalent
func canonicalizeContext(val string) (string, error) {
return readWriteCon(filepath.Join(getSelinuxMountPoint(), "context"), val)
}
/*
ComputeCreateContext requests the type transition from source to target for class from the kernel.
*/
func ComputeCreateContext(source string, target string, class string) (string, error) {
classidx, err := ClassIndex(class)
// computeCreateContext requests the type transition from source to target for
// class from the kernel.
func computeCreateContext(source string, target string, class string) (string, error) {
classidx, err := classIndex(class)
if err != nil {
return "", err
}
@ -439,6 +433,217 @@ func ComputeCreateContext(source string, target string, class string) (string, e
return readWriteCon(filepath.Join(getSelinuxMountPoint(), "create"), fmt.Sprintf("%s %s %d", source, target, classidx))
}
// catsToBitset stores categories in a bitset.
func catsToBitset(cats string) (*bitset.BitSet, error) {
bitset := &bitset.BitSet{}
catlist := strings.Split(cats, ",")
for _, r := range catlist {
ranges := strings.SplitN(r, ".", 2)
if len(ranges) > 1 {
catstart, err := parseLevelItem(ranges[0], category)
if err != nil {
return nil, err
}
catend, err := parseLevelItem(ranges[1], category)
if err != nil {
return nil, err
}
for i := catstart; i <= catend; i++ {
bitset.Set(i)
}
} else {
cat, err := parseLevelItem(ranges[0], category)
if err != nil {
return nil, err
}
bitset.Set(cat)
}
}
return bitset, nil
}
// parseLevelItem parses and verifies that a sensitivity or category are valid
func parseLevelItem(s string, sep levelItem) (uint, error) {
if len(s) < minSensLen || levelItem(s[0]) != sep {
return 0, ErrLevelSyntax
}
val, err := strconv.ParseUint(s[1:], 10, 32)
if err != nil {
return 0, err
}
return uint(val), nil
}
// parseLevel fills a level from a string that contains
// a sensitivity and categories
func (l *level) parseLevel(levelStr string) error {
lvl := strings.SplitN(levelStr, ":", 2)
sens, err := parseLevelItem(lvl[0], sensitivity)
if err != nil {
return errors.Wrap(err, "failed to parse sensitivity")
}
l.sens = sens
if len(lvl) > 1 {
cats, err := catsToBitset(lvl[1])
if err != nil {
return errors.Wrap(err, "failed to parse categories")
}
l.cats = cats
}
return nil
}
// rangeStrToMLSRange marshals a string representation of a range.
func rangeStrToMLSRange(rangeStr string) (*mlsRange, error) {
mlsRange := &mlsRange{}
levelSlice := strings.SplitN(rangeStr, "-", 2)
switch len(levelSlice) {
// rangeStr that has a low and a high level, e.g. s4:c0.c1023-s6:c0.c1023
case 2:
mlsRange.high = &level{}
if err := mlsRange.high.parseLevel(levelSlice[1]); err != nil {
return nil, errors.Wrapf(err, "failed to parse high level %q", levelSlice[1])
}
fallthrough
// rangeStr that is single level, e.g. s6:c0,c3,c5,c30.c1023
case 1:
mlsRange.low = &level{}
if err := mlsRange.low.parseLevel(levelSlice[0]); err != nil {
return nil, errors.Wrapf(err, "failed to parse low level %q", levelSlice[0])
}
}
if mlsRange.high == nil {
mlsRange.high = mlsRange.low
}
return mlsRange, nil
}
// bitsetToStr takes a category bitset and returns it in the
// canonical selinux syntax
func bitsetToStr(c *bitset.BitSet) string {
var str string
i, e := c.NextSet(0)
len := 0
for e {
if len == 0 {
if str != "" {
str += ","
}
str += "c" + strconv.Itoa(int(i))
}
next, e := c.NextSet(i + 1)
if e {
// consecutive cats
if next == i+1 {
len++
i = next
continue
}
}
if len == 1 {
str += ",c" + strconv.Itoa(int(i))
} else if len > 1 {
str += ".c" + strconv.Itoa(int(i))
}
if !e {
break
}
len = 0
i = next
}
return str
}
func (l1 *level) equal(l2 *level) bool {
if l2 == nil || l1 == nil {
return l1 == l2
}
if l1.sens != l2.sens {
return false
}
return l1.cats.Equal(l2.cats)
}
// String returns an mlsRange as a string.
func (m mlsRange) String() string {
low := "s" + strconv.Itoa(int(m.low.sens))
if m.low.cats != nil && m.low.cats.Count() > 0 {
low += ":" + bitsetToStr(m.low.cats)
}
if m.low.equal(m.high) {
return low
}
high := "s" + strconv.Itoa(int(m.high.sens))
if m.high.cats != nil && m.high.cats.Count() > 0 {
high += ":" + bitsetToStr(m.high.cats)
}
return low + "-" + high
}
func max(a, b uint) uint {
if a > b {
return a
}
return b
}
func min(a, b uint) uint {
if a < b {
return a
}
return b
}
// calculateGlbLub computes the glb (greatest lower bound) and lub (least upper bound)
// of a source and target range.
// The glblub is calculated as the greater of the low sensitivities and
// the lower of the high sensitivities and the and of each category bitset.
func calculateGlbLub(sourceRange, targetRange string) (string, error) {
s, err := rangeStrToMLSRange(sourceRange)
if err != nil {
return "", err
}
t, err := rangeStrToMLSRange(targetRange)
if err != nil {
return "", err
}
if s.high.sens < t.low.sens || t.high.sens < s.low.sens {
/* these ranges have no common sensitivities */
return "", ErrIncomparable
}
outrange := &mlsRange{low: &level{}, high: &level{}}
/* take the greatest of the low */
outrange.low.sens = max(s.low.sens, t.low.sens)
/* take the least of the high */
outrange.high.sens = min(s.high.sens, t.high.sens)
/* find the intersecting categories */
if s.low.cats != nil && t.low.cats != nil {
outrange.low.cats = s.low.cats.Intersection(t.low.cats)
}
if s.high.cats != nil && t.high.cats != nil {
outrange.high.cats = s.high.cats.Intersection(t.high.cats)
}
return outrange.String(), nil
}
func readWriteCon(fpath string, val string) (string, error) {
if fpath == "" {
return "", ErrEmptyPath
@ -461,41 +666,37 @@ func readWriteCon(fpath string, val string) (string, error) {
return strings.Trim(retval, "\x00"), nil
}
/*
SetExecLabel sets the SELinux label that the kernel will use for any programs
that are executed by the current process thread, or an error.
*/
func SetExecLabel(label string) error {
// setExecLabel sets the SELinux label that the kernel will use for any programs
// that are executed by the current process thread, or an error.
func setExecLabel(label string) error {
return writeAttr("exec", label)
}
/*
SetTaskLabel sets the SELinux label for the current thread, or an error.
This requires the dyntransition permission.
*/
func SetTaskLabel(label string) error {
// setTaskLabel sets the SELinux label for the current thread, or an error.
// This requires the dyntransition permission.
func setTaskLabel(label string) error {
return writeAttr("current", label)
}
// SetSocketLabel takes a process label and tells the kernel to assign the
// setSocketLabel takes a process label and tells the kernel to assign the
// label to the next socket that gets created
func SetSocketLabel(label string) error {
func setSocketLabel(label string) error {
return writeAttr("sockcreate", label)
}
// SocketLabel retrieves the current socket label setting
func SocketLabel() (string, error) {
// socketLabel retrieves the current socket label setting
func socketLabel() (string, error) {
return readAttr("sockcreate")
}
// PeerLabel retrieves the label of the client on the other side of a socket
func PeerLabel(fd uintptr) (string, error) {
// peerLabel retrieves the label of the client on the other side of a socket
func peerLabel(fd uintptr) (string, error) {
return unix.GetsockoptString(int(fd), unix.SOL_SOCKET, unix.SO_PEERSEC)
}
// SetKeyLabel takes a process label and tells the kernel to assign the
// setKeyLabel takes a process label and tells the kernel to assign the
// label to the next kernel keyring that gets created
func SetKeyLabel(label string) error {
func setKeyLabel(label string) error {
err := writeCon("/proc/self/attr/keycreate", label)
if os.IsNotExist(errors.Cause(err)) {
return nil
@ -506,21 +707,21 @@ func SetKeyLabel(label string) error {
return err
}
// KeyLabel retrieves the current kernel keyring label setting
func KeyLabel() (string, error) {
// keyLabel retrieves the current kernel keyring label setting
func keyLabel() (string, error) {
return readCon("/proc/self/attr/keycreate")
}
// Get returns the Context as a string
func (c Context) Get() string {
// get returns the Context as a string
func (c Context) get() string {
if c["level"] != "" {
return fmt.Sprintf("%s:%s:%s:%s", c["user"], c["role"], c["type"], c["level"])
}
return fmt.Sprintf("%s:%s:%s", c["user"], c["role"], c["type"])
}
// NewContext creates a new Context struct from the specified label
func NewContext(label string) (Context, error) {
// newContext creates a new Context struct from the specified label
func newContext(label string) (Context, error) {
c := make(Context)
if len(label) != 0 {
@ -538,15 +739,15 @@ func NewContext(label string) (Context, error) {
return c, nil
}
// ClearLabels clears all reserved labels
func ClearLabels() {
// clearLabels clears all reserved labels
func clearLabels() {
state.Lock()
state.mcsList = make(map[string]bool)
state.Unlock()
}
// ReserveLabel reserves the MLS/MCS level component of the specified label
func ReserveLabel(label string) {
// reserveLabel reserves the MLS/MCS level component of the specified label
func reserveLabel(label string) {
if len(label) != 0 {
con := strings.SplitN(label, ":", 4)
if len(con) > 3 {
@ -559,8 +760,8 @@ func selinuxEnforcePath() string {
return path.Join(getSelinuxMountPoint(), "enforce")
}
// EnforceMode returns the current SELinux mode Enforcing, Permissive, Disabled
func EnforceMode() int {
// enforceMode returns the current SELinux mode Enforcing, Permissive, Disabled
func enforceMode() int {
var enforce int
enforceB, err := ioutil.ReadFile(selinuxEnforcePath())
@ -574,20 +775,16 @@ func EnforceMode() int {
return enforce
}
/*
SetEnforceMode sets the current SELinux mode Enforcing, Permissive.
Disabled is not valid, since this needs to be set at boot time.
*/
func SetEnforceMode(mode int) error {
// setEnforceMode sets the current SELinux mode Enforcing, Permissive.
// Disabled is not valid, since this needs to be set at boot time.
func setEnforceMode(mode int) error {
return ioutil.WriteFile(selinuxEnforcePath(), []byte(strconv.Itoa(mode)), 0644)
}
/*
DefaultEnforceMode returns the systems default SELinux mode Enforcing,
Permissive or Disabled. Note this is is just the default at boot time.
EnforceMode tells you the systems current mode.
*/
func DefaultEnforceMode() int {
// defaultEnforceMode returns the systems default SELinux mode Enforcing,
// Permissive or Disabled. Note this is is just the default at boot time.
// EnforceMode tells you the systems current mode.
func defaultEnforceMode() int {
switch readConfig(selinuxTag) {
case "enforcing":
return Enforcing
@ -667,11 +864,9 @@ func uniqMcs(catRange uint32) string {
return mcs
}
/*
ReleaseLabel will unreserve the MLS/MCS Level field of the specified label.
Allowing it to be used by another process.
*/
func ReleaseLabel(label string) {
// releaseLabel un-reserves the MLS/MCS Level field of the specified label,
// allowing it to be used by another process.
func releaseLabel(label string) {
if len(label) != 0 {
con := strings.SplitN(label, ":", 4)
if len(con) > 3 {
@ -680,9 +875,9 @@ func ReleaseLabel(label string) {
}
}
// ROFileLabel returns the specified SELinux readonly file label
func ROFileLabel() string {
return roFileLabel
// roFileLabel returns the specified SELinux readonly file label
func roFileLabel() string {
return readOnlyFileLabel
}
func openContextFile() (*os.File, error) {
@ -737,11 +932,9 @@ func loadLabels() map[string]string {
return labels
}
/*
KVMContainerLabels returns the default processLabel and mountLabel to be used
for kvm containers by the calling process.
*/
func KVMContainerLabels() (string, string) {
// kvmContainerLabels returns the default processLabel and mountLabel to be used
// for kvm containers by the calling process.
func kvmContainerLabels() (string, string) {
processLabel := labels["kvm_process"]
if processLabel == "" {
processLabel = labels["process"]
@ -750,11 +943,9 @@ func KVMContainerLabels() (string, string) {
return addMcs(processLabel, labels["file"])
}
/*
InitContainerLabels returns the default processLabel and file labels to be
used for containers running an init system like systemd by the calling process.
*/
func InitContainerLabels() (string, string) {
// initContainerLabels returns the default processLabel and file labels to be
// used for containers running an init system like systemd by the calling process.
func initContainerLabels() (string, string) {
processLabel := labels["init_process"]
if processLabel == "" {
processLabel = labels["process"]
@ -763,25 +954,23 @@ func InitContainerLabels() (string, string) {
return addMcs(processLabel, labels["file"])
}
/*
ContainerLabels returns an allocated processLabel and fileLabel to be used for
container labeling by the calling process.
*/
func ContainerLabels() (processLabel string, fileLabel string) {
if !GetEnabled() {
// containerLabels returns an allocated processLabel and fileLabel to be used for
// container labeling by the calling process.
func containerLabels() (processLabel string, fileLabel string) {
if !getEnabled() {
return "", ""
}
processLabel = labels["process"]
fileLabel = labels["file"]
roFileLabel = labels["ro_file"]
readOnlyFileLabel = labels["ro_file"]
if processLabel == "" || fileLabel == "" {
return "", fileLabel
}
if roFileLabel == "" {
roFileLabel = fileLabel
if readOnlyFileLabel == "" {
readOnlyFileLabel = fileLabel
}
return addMcs(processLabel, fileLabel)
@ -790,7 +979,7 @@ func ContainerLabels() (processLabel string, fileLabel string) {
func addMcs(processLabel, fileLabel string) (string, string) {
scon, _ := NewContext(processLabel)
if scon["level"] != "" {
mcs := uniqMcs(1024)
mcs := uniqMcs(CategoryRange)
scon["level"] = mcs
processLabel = scon.Get()
scon, _ = NewContext(fileLabel)
@ -800,16 +989,14 @@ func addMcs(processLabel, fileLabel string) (string, string) {
return processLabel, fileLabel
}
// SecurityCheckContext validates that the SELinux label is understood by the kernel
func SecurityCheckContext(val string) error {
// securityCheckContext validates that the SELinux label is understood by the kernel
func securityCheckContext(val string) error {
return ioutil.WriteFile(path.Join(getSelinuxMountPoint(), "context"), []byte(val), 0644)
}
/*
CopyLevel returns a label with the MLS/MCS level from src label replaced on
the dest label.
*/
func CopyLevel(src, dest string) (string, error) {
// copyLevel returns a label with the MLS/MCS level from src label replaced on
// the dest label.
func copyLevel(src, dest string) (string, error) {
if src == "" {
return "", nil
}
@ -833,7 +1020,7 @@ func CopyLevel(src, dest string) (string, error) {
return tcon.Get(), nil
}
// Prevent users from relabing system files
// Prevent users from relabeling system files
func badPrefix(fpath string) error {
if fpath == "" {
return ErrEmptyPath
@ -848,10 +1035,10 @@ func badPrefix(fpath string) error {
return nil
}
// Chcon changes the fpath file object to the SELinux label label.
// If fpath is a directory and recurse is true, Chcon will walk the
// chcon changes the fpath file object to the SELinux label label.
// If fpath is a directory and recurse is true, then chcon walks the
// directory tree setting the label.
func Chcon(fpath string, label string, recurse bool) error {
func chcon(fpath string, label string, recurse bool) error {
if fpath == "" {
return ErrEmptyPath
}
@ -876,9 +1063,9 @@ func Chcon(fpath string, label string, recurse bool) error {
})
}
// DupSecOpt takes an SELinux process label and returns security options that
// dupSecOpt takes an SELinux process label and returns security options that
// can be used to set the SELinux Type and Level for future container processes.
func DupSecOpt(src string) ([]string, error) {
func dupSecOpt(src string) ([]string, error) {
if src == "" {
return nil, nil
}
@ -903,8 +1090,8 @@ func DupSecOpt(src string) ([]string, error) {
return dup, nil
}
// DisableSecOpt returns a security opt that can be used to disable SELinux
// disableSecOpt returns a security opt that can be used to disable SELinux
// labeling support for future container processes.
func DisableSecOpt() []string {
func disableSecOpt() []string {
return []string{"disable"}
}

View file

@ -2,253 +2,147 @@
package selinux
import (
"errors"
)
const (
// Enforcing constant indicate SELinux is in enforcing mode
Enforcing = 1
// Permissive constant to indicate SELinux is in permissive mode
Permissive = 0
// Disabled constant to indicate SELinux is disabled
Disabled = -1
)
var (
// ErrMCSAlreadyExists is returned when trying to allocate a duplicate MCS.
ErrMCSAlreadyExists = errors.New("MCS label already exists")
// ErrEmptyPath is returned when an empty path has been specified.
ErrEmptyPath = errors.New("empty path")
)
// Context is a representation of the SELinux label broken into 4 parts
type Context map[string]string
// SetDisabled disables selinux support for the package
func SetDisabled() {
return
func setDisabled() {
}
// GetEnabled returns whether selinux is currently enabled.
func GetEnabled() bool {
func getEnabled() bool {
return false
}
// ClassIndex returns the int index for an object class in the loaded policy, or -1 and an error
func ClassIndex(class string) (int, error) {
func classIndex(class string) (int, error) {
return -1, nil
}
// SetFileLabel sets the SELinux label for this path or returns an error.
func SetFileLabel(fpath string, label string) error {
func setFileLabel(fpath string, label string) error {
return nil
}
// FileLabel returns the SELinux label for this path or returns an error.
func FileLabel(fpath string) (string, error) {
func fileLabel(fpath string) (string, error) {
return "", nil
}
/*
SetFSCreateLabel tells kernel the label to create all file system objects
created by this task. Setting label="" to return to default.
*/
func SetFSCreateLabel(label string) error {
func setFSCreateLabel(label string) error {
return nil
}
/*
FSCreateLabel returns the default label the kernel which the kernel is using
for file system objects created by this task. "" indicates default.
*/
func FSCreateLabel() (string, error) {
func fsCreateLabel() (string, error) {
return "", nil
}
// CurrentLabel returns the SELinux label of the current process thread, or an error.
func CurrentLabel() (string, error) {
func currentLabel() (string, error) {
return "", nil
}
// PidLabel returns the SELinux label of the given pid, or an error.
func PidLabel(pid int) (string, error) {
func pidLabel(pid int) (string, error) {
return "", nil
}
/*
ExecLabel returns the SELinux label that the kernel will use for any programs
that are executed by the current process thread, or an error.
*/
func ExecLabel() (string, error) {
func execLabel() (string, error) {
return "", nil
}
/*
CanonicalizeContext takes a context string and writes it to the kernel
the function then returns the context that the kernel will use. This function
can be used to see if two contexts are equivalent
*/
func CanonicalizeContext(val string) (string, error) {
func canonicalizeContext(val string) (string, error) {
return "", nil
}
/*
ComputeCreateContext requests the type transition from source to target for class from the kernel.
*/
func ComputeCreateContext(source string, target string, class string) (string, error) {
func computeCreateContext(source string, target string, class string) (string, error) {
return "", nil
}
/*
SetExecLabel sets the SELinux label that the kernel will use for any programs
that are executed by the current process thread, or an error.
*/
func SetExecLabel(label string) error {
func calculateGlbLub(sourceRange, targetRange string) (string, error) {
return "", nil
}
func setExecLabel(label string) error {
return nil
}
/*
SetTaskLabel sets the SELinux label for the current thread, or an error.
This requires the dyntransition permission.
*/
func SetTaskLabel(label string) error {
func setTaskLabel(label string) error {
return nil
}
/*
SetSocketLabel sets the SELinux label that the kernel will use for any programs
that are executed by the current process thread, or an error.
*/
func SetSocketLabel(label string) error {
func setSocketLabel(label string) error {
return nil
}
// SocketLabel retrieves the current socket label setting
func SocketLabel() (string, error) {
func socketLabel() (string, error) {
return "", nil
}
// PeerLabel retrieves the label of the client on the other side of a socket
func PeerLabel(fd uintptr) (string, error) {
func peerLabel(fd uintptr) (string, error) {
return "", nil
}
// SetKeyLabel takes a process label and tells the kernel to assign the
// label to the next kernel keyring that gets created
func SetKeyLabel(label string) error {
func setKeyLabel(label string) error {
return nil
}
// KeyLabel retrieves the current kernel keyring label setting
func KeyLabel() (string, error) {
func keyLabel() (string, error) {
return "", nil
}
// Get returns the Context as a string
func (c Context) Get() string {
func (c Context) get() string {
return ""
}
// NewContext creates a new Context struct from the specified label
func NewContext(label string) (Context, error) {
func newContext(label string) (Context, error) {
c := make(Context)
return c, nil
}
// ClearLabels clears all reserved MLS/MCS levels
func ClearLabels() {
return
func clearLabels() {
}
// ReserveLabel reserves the MLS/MCS level component of the specified label
func ReserveLabel(label string) {
return
func reserveLabel(label string) {
}
// EnforceMode returns the current SELinux mode Enforcing, Permissive, Disabled
func EnforceMode() int {
func enforceMode() int {
return Disabled
}
/*
SetEnforceMode sets the current SELinux mode Enforcing, Permissive.
Disabled is not valid, since this needs to be set at boot time.
*/
func SetEnforceMode(mode int) error {
func setEnforceMode(mode int) error {
return nil
}
/*
DefaultEnforceMode returns the systems default SELinux mode Enforcing,
Permissive or Disabled. Note this is is just the default at boot time.
EnforceMode tells you the systems current mode.
*/
func DefaultEnforceMode() int {
func defaultEnforceMode() int {
return Disabled
}
/*
ReleaseLabel will unreserve the MLS/MCS Level field of the specified label.
Allowing it to be used by another process.
*/
func ReleaseLabel(label string) {
return
func releaseLabel(label string) {
}
// ROFileLabel returns the specified SELinux readonly file label
func ROFileLabel() string {
func roFileLabel() string {
return ""
}
// KVMContainerLabels returns the default processLabel and mountLabel to be used
// for kvm containers by the calling process.
func KVMContainerLabels() (string, string) {
func kvmContainerLabels() (string, string) {
return "", ""
}
// InitContainerLabels returns the default processLabel and file labels to be
// used for containers running an init system like systemd by the calling
func InitContainerLabels() (string, string) {
func initContainerLabels() (string, string) {
return "", ""
}
/*
ContainerLabels returns an allocated processLabel and fileLabel to be used for
container labeling by the calling process.
*/
func ContainerLabels() (processLabel string, fileLabel string) {
func containerLabels() (processLabel string, fileLabel string) {
return "", ""
}
// SecurityCheckContext validates that the SELinux label is understood by the kernel
func SecurityCheckContext(val string) error {
func securityCheckContext(val string) error {
return nil
}
/*
CopyLevel returns a label with the MLS/MCS level from src label replaced on
the dest label.
*/
func CopyLevel(src, dest string) (string, error) {
func copyLevel(src, dest string) (string, error) {
return "", nil
}
// Chcon changes the `fpath` file object to the SELinux label `label`.
// If `fpath` is a directory and `recurse`` is true, Chcon will walk the
// directory tree setting the label.
func Chcon(fpath string, label string, recurse bool) error {
func chcon(fpath string, label string, recurse bool) error {
return nil
}
// DupSecOpt takes an SELinux process label and returns security options that
// can be used to set the SELinux Type and Level for future container processes.
func DupSecOpt(src string) ([]string, error) {
func dupSecOpt(src string) ([]string, error) {
return nil, nil
}
// DisableSecOpt returns a security opt that can be used to disable SELinux
// labeling support for future container processes.
func DisableSecOpt() []string {
func disableSecOpt() []string {
return []string{"disable"}
}

View file

@ -3,6 +3,7 @@ module github.com/opencontainers/selinux
go 1.13
require (
github.com/pkg/errors v0.8.1
github.com/pkg/errors v0.9.1
github.com/willf/bitset v1.1.11-0.20200630133818-d5bec3311243
golang.org/x/sys v0.0.0-20191115151921-52ab43148777
)

View file

@ -48,7 +48,11 @@ func WalkN(root string, walkFn WalkFunc, num int) error {
errCh := make(chan error, 1) // get the first error, ignore others
// Start walking a tree asap
var err error
var (
err error
wg sync.WaitGroup
)
wg.Add(1)
go func() {
err = filepath.Walk(root, func(p string, info os.FileInfo, err error) error {
if err != nil {
@ -68,9 +72,9 @@ func WalkN(root string, walkFn WalkFunc, num int) error {
if err == nil {
close(files)
}
wg.Done()
}()
var wg sync.WaitGroup
wg.Add(num)
for i := 0; i < num; i++ {
go func() {

27
vendor/github.com/willf/bitset/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2014 Will Fitzgerald. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

94
vendor/github.com/willf/bitset/README.md generated vendored Normal file
View file

@ -0,0 +1,94 @@
# bitset
*Go language library to map between non-negative integers and boolean values*
[![Test](https://github.com/willf/bitset/workflows/Test/badge.svg)](https://github.com/willf/bitset/actions?query=workflow%3ATest)
[![Master Coverage Status](https://coveralls.io/repos/willf/bitset/badge.svg?branch=master&service=github)](https://coveralls.io/github/willf/bitset?branch=master)
[![Go Report Card](https://goreportcard.com/badge/github.com/willf/bitset)](https://goreportcard.com/report/github.com/willf/bitset)
[![PkgGoDev](https://pkg.go.dev/badge/github.com/willf/bitset?tab=doc)](https://pkg.go.dev/github.com/willf/bitset?tab=doc)
## Description
Package bitset implements bitsets, a mapping between non-negative integers and boolean values.
It should be more efficient than map[uint] bool.
It provides methods for setting, clearing, flipping, and testing individual integers.
But it also provides set intersection, union, difference, complement, and symmetric operations, as well as tests to check whether any, all, or no bits are set, and querying a bitset's current length and number of positive bits.
BitSets are expanded to the size of the largest set bit; the memory allocation is approximately Max bits, where Max is the largest set bit. BitSets are never shrunk. On creation, a hint can be given for the number of bits that will be used.
Many of the methods, including Set, Clear, and Flip, return a BitSet pointer, which allows for chaining.
### Example use:
```go
package main
import (
"fmt"
"math/rand"
"github.com/willf/bitset"
)
func main() {
fmt.Printf("Hello from BitSet!\n")
var b bitset.BitSet
// play some Go Fish
for i := 0; i < 100; i++ {
card1 := uint(rand.Intn(52))
card2 := uint(rand.Intn(52))
b.Set(card1)
if b.Test(card2) {
fmt.Println("Go Fish!")
}
b.Clear(card1)
}
// Chaining
b.Set(10).Set(11)
for i, e := b.NextSet(0); e; i, e = b.NextSet(i + 1) {
fmt.Println("The following bit is set:", i)
}
if b.Intersection(bitset.New(100).Set(10)).Count() == 1 {
fmt.Println("Intersection works.")
} else {
fmt.Println("Intersection doesn't work???")
}
}
```
As an alternative to BitSets, one should check out the 'big' package, which provides a (less set-theoretical) view of bitsets.
Package documentation is at: https://pkg.go.dev/github.com/willf/bitset?tab=doc
## Memory Usage
The memory usage of a bitset using N bits is at least N/8 bytes. The number of bits in a bitset is at least as large as one plus the greatest bit index you have accessed. Thus it is possible to run out of memory while using a bitset. If you have lots of bits, you might prefer compressed bitsets, like the [Roaring bitmaps](http://roaringbitmap.org) and its [Go implementation](https://github.com/RoaringBitmap/roaring).
## Implementation Note
Go 1.9 introduced a native `math/bits` library. We provide backward compatibility to Go 1.7, which might be removed.
It is possible that a later version will match the `math/bits` return signature for counts (which is `int`, rather than our library's `unit64`). If so, the version will be bumped.
## Installation
```bash
go get github.com/willf/bitset
```
## Contributing
If you wish to contribute to this project, please branch and issue a pull request against master ("[GitHub Flow](https://guides.github.com/introduction/flow/)")
## Running all tests
Before committing the code, please check if it passes tests, has adequate coverage, etc.
```bash
go test
go test -cover
```

931
vendor/github.com/willf/bitset/bitset.go generated vendored Normal file
View file

@ -0,0 +1,931 @@
/*
Package bitset implements bitsets, a mapping
between non-negative integers and boolean values. It should be more
efficient than map[uint] bool.
It provides methods for setting, clearing, flipping, and testing
individual integers.
But it also provides set intersection, union, difference,
complement, and symmetric operations, as well as tests to
check whether any, all, or no bits are set, and querying a
bitset's current length and number of positive bits.
BitSets are expanded to the size of the largest set bit; the
memory allocation is approximately Max bits, where Max is
the largest set bit. BitSets are never shrunk. On creation,
a hint can be given for the number of bits that will be used.
Many of the methods, including Set,Clear, and Flip, return
a BitSet pointer, which allows for chaining.
Example use:
import "bitset"
var b BitSet
b.Set(10).Set(11)
if b.Test(1000) {
b.Clear(1000)
}
if B.Intersection(bitset.New(100).Set(10)).Count() > 1 {
fmt.Println("Intersection works.")
}
As an alternative to BitSets, one should check out the 'big' package,
which provides a (less set-theoretical) view of bitsets.
*/
package bitset
import (
"bufio"
"bytes"
"encoding/base64"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"strconv"
)
// the wordSize of a bit set
const wordSize = uint(64)
// log2WordSize is lg(wordSize)
const log2WordSize = uint(6)
// allBits has every bit set
const allBits uint64 = 0xffffffffffffffff
// default binary BigEndian
var binaryOrder binary.ByteOrder = binary.BigEndian
// default json encoding base64.URLEncoding
var base64Encoding = base64.URLEncoding
// Base64StdEncoding Marshal/Unmarshal BitSet with base64.StdEncoding(Default: base64.URLEncoding)
func Base64StdEncoding() { base64Encoding = base64.StdEncoding }
// LittleEndian Marshal/Unmarshal Binary as Little Endian(Default: binary.BigEndian)
func LittleEndian() { binaryOrder = binary.LittleEndian }
// A BitSet is a set of bits. The zero value of a BitSet is an empty set of length 0.
type BitSet struct {
length uint
set []uint64
}
// Error is used to distinguish errors (panics) generated in this package.
type Error string
// safeSet will fixup b.set to be non-nil and return the field value
func (b *BitSet) safeSet() []uint64 {
if b.set == nil {
b.set = make([]uint64, wordsNeeded(0))
}
return b.set
}
// From is a constructor used to create a BitSet from an array of integers
func From(buf []uint64) *BitSet {
return &BitSet{uint(len(buf)) * 64, buf}
}
// Bytes returns the bitset as array of integers
func (b *BitSet) Bytes() []uint64 {
return b.set
}
// wordsNeeded calculates the number of words needed for i bits
func wordsNeeded(i uint) int {
if i > (Cap() - wordSize + 1) {
return int(Cap() >> log2WordSize)
}
return int((i + (wordSize - 1)) >> log2WordSize)
}
// New creates a new BitSet with a hint that length bits will be required
func New(length uint) (bset *BitSet) {
defer func() {
if r := recover(); r != nil {
bset = &BitSet{
0,
make([]uint64, 0),
}
}
}()
bset = &BitSet{
length,
make([]uint64, wordsNeeded(length)),
}
return bset
}
// Cap returns the total possible capacity, or number of bits
func Cap() uint {
return ^uint(0)
}
// Len returns the number of bits in the BitSet.
// Note the difference to method Count, see example.
func (b *BitSet) Len() uint {
return b.length
}
// extendSetMaybe adds additional words to incorporate new bits if needed
func (b *BitSet) extendSetMaybe(i uint) {
if i >= b.length { // if we need more bits, make 'em
if i >= Cap() {
panic("You are exceeding the capacity")
}
nsize := wordsNeeded(i + 1)
if b.set == nil {
b.set = make([]uint64, nsize)
} else if cap(b.set) >= nsize {
b.set = b.set[:nsize] // fast resize
} else if len(b.set) < nsize {
newset := make([]uint64, nsize, 2*nsize) // increase capacity 2x
copy(newset, b.set)
b.set = newset
}
b.length = i + 1
}
}
// Test whether bit i is set.
func (b *BitSet) Test(i uint) bool {
if i >= b.length {
return false
}
return b.set[i>>log2WordSize]&(1<<(i&(wordSize-1))) != 0
}
// Set bit i to 1, the capacity of the bitset is automatically
// increased accordingly.
// If i>= Cap(), this function will panic.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Set(i uint) *BitSet {
b.extendSetMaybe(i)
b.set[i>>log2WordSize] |= 1 << (i & (wordSize - 1))
return b
}
// Clear bit i to 0
func (b *BitSet) Clear(i uint) *BitSet {
if i >= b.length {
return b
}
b.set[i>>log2WordSize] &^= 1 << (i & (wordSize - 1))
return b
}
// SetTo sets bit i to value.
// If i>= Cap(), this function will panic.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) SetTo(i uint, value bool) *BitSet {
if value {
return b.Set(i)
}
return b.Clear(i)
}
// Flip bit at i.
// If i>= Cap(), this function will panic.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Flip(i uint) *BitSet {
if i >= b.length {
return b.Set(i)
}
b.set[i>>log2WordSize] ^= 1 << (i & (wordSize - 1))
return b
}
// Shrink shrinks BitSet so that the provided value is the last possible
// set value. It clears all bits > the provided index and reduces the size
// and length of the set.
//
// Note that the parameter value is not the new length in bits: it is the
// maximal value that can be stored in the bitset after the function call.
// The new length in bits is the parameter value + 1. Thus it is not possible
// to use this function to set the length to 0, the minimal value of the length
// after this function call is 1.
//
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
func (b *BitSet) Shrink(lastbitindex uint) *BitSet {
length := lastbitindex + 1
idx := wordsNeeded(length)
if idx > len(b.set) {
return b
}
shrunk := make([]uint64, idx)
copy(shrunk, b.set[:idx])
b.set = shrunk
b.length = length
b.set[idx-1] &= (allBits >> (uint64(64) - uint64(length&(wordSize-1))))
return b
}
// Compact shrinks BitSet to so that we preserve all set bits, while minimizing
// memory usage. Compact calls Shrink.
func (b *BitSet) Compact() *BitSet {
idx := len(b.set) - 1
for ; idx >= 0 && b.set[idx] == 0; idx-- {
}
newlength := uint((idx + 1) << log2WordSize)
if newlength >= b.length {
return b // nothing to do
}
if newlength > 0 {
return b.Shrink(newlength - 1)
}
// We preserve one word
return b.Shrink(63)
}
// InsertAt takes an index which indicates where a bit should be
// inserted. Then it shifts all the bits in the set to the left by 1, starting
// from the given index position, and sets the index position to 0.
//
// Depending on the size of your BitSet, and where you are inserting the new entry,
// this method could be extremely slow and in some cases might cause the entire BitSet
// to be recopied.
func (b *BitSet) InsertAt(idx uint) *BitSet {
insertAtElement := (idx >> log2WordSize)
// if length of set is a multiple of wordSize we need to allocate more space first
if b.isLenExactMultiple() {
b.set = append(b.set, uint64(0))
}
var i uint
for i = uint(len(b.set) - 1); i > insertAtElement; i-- {
// all elements above the position where we want to insert can simply by shifted
b.set[i] <<= 1
// we take the most significant bit of the previous element and set it as
// the least significant bit of the current element
b.set[i] |= (b.set[i-1] & 0x8000000000000000) >> 63
}
// generate a mask to extract the data that we need to shift left
// within the element where we insert a bit
dataMask := ^(uint64(1)<<uint64(idx&(wordSize-1)) - 1)
// extract that data that we'll shift
data := b.set[i] & dataMask
// set the positions of the data mask to 0 in the element where we insert
b.set[i] &= ^dataMask
// shift data mask to the left and insert its data to the slice element
b.set[i] |= data << 1
// add 1 to length of BitSet
b.length++
return b
}
// String creates a string representation of the Bitmap
func (b *BitSet) String() string {
// follows code from https://github.com/RoaringBitmap/roaring
var buffer bytes.Buffer
start := []byte("{")
buffer.Write(start)
counter := 0
i, e := b.NextSet(0)
for e {
counter = counter + 1
// to avoid exhausting the memory
if counter > 0x40000 {
buffer.WriteString("...")
break
}
buffer.WriteString(strconv.FormatInt(int64(i), 10))
i, e = b.NextSet(i + 1)
if e {
buffer.WriteString(",")
}
}
buffer.WriteString("}")
return buffer.String()
}
// DeleteAt deletes the bit at the given index position from
// within the bitset
// All the bits residing on the left of the deleted bit get
// shifted right by 1
// The running time of this operation may potentially be
// relatively slow, O(length)
func (b *BitSet) DeleteAt(i uint) *BitSet {
// the index of the slice element where we'll delete a bit
deleteAtElement := i >> log2WordSize
// generate a mask for the data that needs to be shifted right
// within that slice element that gets modified
dataMask := ^((uint64(1) << (i & (wordSize - 1))) - 1)
// extract the data that we'll shift right from the slice element
data := b.set[deleteAtElement] & dataMask
// set the masked area to 0 while leaving the rest as it is
b.set[deleteAtElement] &= ^dataMask
// shift the previously extracted data to the right and then
// set it in the previously masked area
b.set[deleteAtElement] |= (data >> 1) & dataMask
// loop over all the consecutive slice elements to copy each
// lowest bit into the highest position of the previous element,
// then shift the entire content to the right by 1
for i := int(deleteAtElement) + 1; i < len(b.set); i++ {
b.set[i-1] |= (b.set[i] & 1) << 63
b.set[i] >>= 1
}
b.length = b.length - 1
return b
}
// NextSet returns the next bit set from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no set bit found)
// for i,e := v.NextSet(0); e; i,e = v.NextSet(i + 1) {...}
//
// Users concerned with performance may want to use NextSetMany to
// retrieve several values at once.
func (b *BitSet) NextSet(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
w := b.set[x]
w = w >> (i & (wordSize - 1))
if w != 0 {
return i + trailingZeroes64(w), true
}
x = x + 1
for x < len(b.set) {
if b.set[x] != 0 {
return uint(x)*wordSize + trailingZeroes64(b.set[x]), true
}
x = x + 1
}
return 0, false
}
// NextSetMany returns many next bit sets from the specified index,
// including possibly the current index and up to cap(buffer).
// If the returned slice has len zero, then no more set bits were found
//
// buffer := make([]uint, 256) // this should be reused
// j := uint(0)
// j, buffer = bitmap.NextSetMany(j, buffer)
// for ; len(buffer) > 0; j, buffer = bitmap.NextSetMany(j,buffer) {
// for k := range buffer {
// do something with buffer[k]
// }
// j += 1
// }
//
//
// It is possible to retrieve all set bits as follow:
//
// indices := make([]uint, bitmap.Count())
// bitmap.NextSetMany(0, indices)
//
// However if bitmap.Count() is large, it might be preferable to
// use several calls to NextSetMany, for performance reasons.
func (b *BitSet) NextSetMany(i uint, buffer []uint) (uint, []uint) {
myanswer := buffer
capacity := cap(buffer)
x := int(i >> log2WordSize)
if x >= len(b.set) || capacity == 0 {
return 0, myanswer[:0]
}
skip := i & (wordSize - 1)
word := b.set[x] >> skip
myanswer = myanswer[:capacity]
size := int(0)
for word != 0 {
r := trailingZeroes64(word)
t := word & ((^word) + 1)
myanswer[size] = r + i
size++
if size == capacity {
goto End
}
word = word ^ t
}
x++
for idx, word := range b.set[x:] {
for word != 0 {
r := trailingZeroes64(word)
t := word & ((^word) + 1)
myanswer[size] = r + (uint(x+idx) << 6)
size++
if size == capacity {
goto End
}
word = word ^ t
}
}
End:
if size > 0 {
return myanswer[size-1], myanswer[:size]
}
return 0, myanswer[:0]
}
// NextClear returns the next clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are set)
func (b *BitSet) NextClear(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
w := b.set[x]
w = w >> (i & (wordSize - 1))
wA := allBits >> (i & (wordSize - 1))
index := i + trailingZeroes64(^w)
if w != wA && index < b.length {
return index, true
}
x++
for x < len(b.set) {
index = uint(x)*wordSize + trailingZeroes64(^b.set[x])
if b.set[x] != allBits && index < b.length {
return index, true
}
x++
}
return 0, false
}
// ClearAll clears the entire BitSet
func (b *BitSet) ClearAll() *BitSet {
if b != nil && b.set != nil {
for i := range b.set {
b.set[i] = 0
}
}
return b
}
// wordCount returns the number of words used in a bit set
func (b *BitSet) wordCount() int {
return len(b.set)
}
// Clone this BitSet
func (b *BitSet) Clone() *BitSet {
c := New(b.length)
if b.set != nil { // Clone should not modify current object
copy(c.set, b.set)
}
return c
}
// Copy into a destination BitSet
// Returning the size of the destination BitSet
// like array copy
func (b *BitSet) Copy(c *BitSet) (count uint) {
if c == nil {
return
}
if b.set != nil { // Copy should not modify current object
copy(c.set, b.set)
}
count = c.length
if b.length < c.length {
count = b.length
}
return
}
// Count (number of set bits).
// Also known as "popcount" or "popularity count".
func (b *BitSet) Count() uint {
if b != nil && b.set != nil {
return uint(popcntSlice(b.set))
}
return 0
}
// Equal tests the equivalence of two BitSets.
// False if they are of different sizes, otherwise true
// only if all the same bits are set
func (b *BitSet) Equal(c *BitSet) bool {
if c == nil || b == nil {
return c == b
}
if b.length != c.length {
return false
}
if b.length == 0 { // if they have both length == 0, then could have nil set
return true
}
// testing for equality shoud not transform the bitset (no call to safeSet)
for p, v := range b.set {
if c.set[p] != v {
return false
}
}
return true
}
func panicIfNull(b *BitSet) {
if b == nil {
panic(Error("BitSet must not be null"))
}
}
// Difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) Difference(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
result = b.Clone() // clone b (in case b is bigger than compare)
l := int(compare.wordCount())
if l > int(b.wordCount()) {
l = int(b.wordCount())
}
for i := 0; i < l; i++ {
result.set[i] = b.set[i] &^ compare.set[i]
}
return
}
// DifferenceCardinality computes the cardinality of the differnce
func (b *BitSet) DifferenceCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
l := int(compare.wordCount())
if l > int(b.wordCount()) {
l = int(b.wordCount())
}
cnt := uint64(0)
cnt += popcntMaskSlice(b.set[:l], compare.set[:l])
cnt += popcntSlice(b.set[l:])
return uint(cnt)
}
// InPlaceDifference computes the difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) InPlaceDifference(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := int(compare.wordCount())
if l > int(b.wordCount()) {
l = int(b.wordCount())
}
for i := 0; i < l; i++ {
b.set[i] &^= compare.set[i]
}
}
// Convenience function: return two bitsets ordered by
// increasing length. Note: neither can be nil
func sortByLength(a *BitSet, b *BitSet) (ap *BitSet, bp *BitSet) {
if a.length <= b.length {
ap, bp = a, b
} else {
ap, bp = b, a
}
return
}
// Intersection of base set and other set
// This is the BitSet equivalent of & (and)
func (b *BitSet) Intersection(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
result = New(b.length)
for i, word := range b.set {
result.set[i] = word & compare.set[i]
}
return
}
// IntersectionCardinality computes the cardinality of the union
func (b *BitSet) IntersectionCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntAndSlice(b.set, compare.set)
return uint(cnt)
}
// InPlaceIntersection destructively computes the intersection of
// base set and the compare set.
// This is the BitSet equivalent of & (and)
func (b *BitSet) InPlaceIntersection(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := int(compare.wordCount())
if l > int(b.wordCount()) {
l = int(b.wordCount())
}
for i := 0; i < l; i++ {
b.set[i] &= compare.set[i]
}
for i := l; i < len(b.set); i++ {
b.set[i] = 0
}
if compare.length > 0 {
b.extendSetMaybe(compare.length - 1)
}
}
// Union of base set and other set
// This is the BitSet equivalent of | (or)
func (b *BitSet) Union(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
result = compare.Clone()
for i, word := range b.set {
result.set[i] = word | compare.set[i]
}
return
}
// UnionCardinality computes the cardinality of the uniton of the base set
// and the compare set.
func (b *BitSet) UnionCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntOrSlice(b.set, compare.set)
if len(compare.set) > len(b.set) {
cnt += popcntSlice(compare.set[len(b.set):])
}
return uint(cnt)
}
// InPlaceUnion creates the destructive union of base set and compare set.
// This is the BitSet equivalent of | (or).
func (b *BitSet) InPlaceUnion(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := int(compare.wordCount())
if l > int(b.wordCount()) {
l = int(b.wordCount())
}
if compare.length > 0 {
b.extendSetMaybe(compare.length - 1)
}
for i := 0; i < l; i++ {
b.set[i] |= compare.set[i]
}
if len(compare.set) > l {
for i := l; i < len(compare.set); i++ {
b.set[i] = compare.set[i]
}
}
}
// SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) SymmetricDifference(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
// compare is bigger, so clone it
result = compare.Clone()
for i, word := range b.set {
result.set[i] = word ^ compare.set[i]
}
return
}
// SymmetricDifferenceCardinality computes the cardinality of the symmetric difference
func (b *BitSet) SymmetricDifferenceCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntXorSlice(b.set, compare.set)
if len(compare.set) > len(b.set) {
cnt += popcntSlice(compare.set[len(b.set):])
}
return uint(cnt)
}
// InPlaceSymmetricDifference creates the destructive SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) InPlaceSymmetricDifference(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := int(compare.wordCount())
if l > int(b.wordCount()) {
l = int(b.wordCount())
}
if compare.length > 0 {
b.extendSetMaybe(compare.length - 1)
}
for i := 0; i < l; i++ {
b.set[i] ^= compare.set[i]
}
if len(compare.set) > l {
for i := l; i < len(compare.set); i++ {
b.set[i] = compare.set[i]
}
}
}
// Is the length an exact multiple of word sizes?
func (b *BitSet) isLenExactMultiple() bool {
return b.length%wordSize == 0
}
// Clean last word by setting unused bits to 0
func (b *BitSet) cleanLastWord() {
if !b.isLenExactMultiple() {
b.set[len(b.set)-1] &= allBits >> (wordSize - b.length%wordSize)
}
}
// Complement computes the (local) complement of a biset (up to length bits)
func (b *BitSet) Complement() (result *BitSet) {
panicIfNull(b)
result = New(b.length)
for i, word := range b.set {
result.set[i] = ^word
}
result.cleanLastWord()
return
}
// All returns true if all bits are set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) All() bool {
panicIfNull(b)
return b.Count() == b.length
}
// None returns true if no bit is set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) None() bool {
panicIfNull(b)
if b != nil && b.set != nil {
for _, word := range b.set {
if word > 0 {
return false
}
}
return true
}
return true
}
// Any returns true if any bit is set, false otherwise
func (b *BitSet) Any() bool {
panicIfNull(b)
return !b.None()
}
// IsSuperSet returns true if this is a superset of the other set
func (b *BitSet) IsSuperSet(other *BitSet) bool {
for i, e := other.NextSet(0); e; i, e = other.NextSet(i + 1) {
if !b.Test(i) {
return false
}
}
return true
}
// IsStrictSuperSet returns true if this is a strict superset of the other set
func (b *BitSet) IsStrictSuperSet(other *BitSet) bool {
return b.Count() > other.Count() && b.IsSuperSet(other)
}
// DumpAsBits dumps a bit set as a string of bits
func (b *BitSet) DumpAsBits() string {
if b.set == nil {
return "."
}
buffer := bytes.NewBufferString("")
i := len(b.set) - 1
for ; i >= 0; i-- {
fmt.Fprintf(buffer, "%064b.", b.set[i])
}
return buffer.String()
}
// BinaryStorageSize returns the binary storage requirements
func (b *BitSet) BinaryStorageSize() int {
return binary.Size(uint64(0)) + binary.Size(b.set)
}
// WriteTo writes a BitSet to a stream
func (b *BitSet) WriteTo(stream io.Writer) (int64, error) {
length := uint64(b.length)
// Write length
err := binary.Write(stream, binaryOrder, length)
if err != nil {
return 0, err
}
// Write set
err = binary.Write(stream, binaryOrder, b.set)
return int64(b.BinaryStorageSize()), err
}
// ReadFrom reads a BitSet from a stream written using WriteTo
func (b *BitSet) ReadFrom(stream io.Reader) (int64, error) {
var length uint64
// Read length first
err := binary.Read(stream, binaryOrder, &length)
if err != nil {
return 0, err
}
newset := New(uint(length))
if uint64(newset.length) != length {
return 0, errors.New("unmarshalling error: type mismatch")
}
// Read remaining bytes as set
err = binary.Read(stream, binaryOrder, newset.set)
if err != nil {
return 0, err
}
*b = *newset
return int64(b.BinaryStorageSize()), nil
}
// MarshalBinary encodes a BitSet into a binary form and returns the result.
func (b *BitSet) MarshalBinary() ([]byte, error) {
var buf bytes.Buffer
writer := bufio.NewWriter(&buf)
_, err := b.WriteTo(writer)
if err != nil {
return []byte{}, err
}
err = writer.Flush()
return buf.Bytes(), err
}
// UnmarshalBinary decodes the binary form generated by MarshalBinary.
func (b *BitSet) UnmarshalBinary(data []byte) error {
buf := bytes.NewReader(data)
reader := bufio.NewReader(buf)
_, err := b.ReadFrom(reader)
return err
}
// MarshalJSON marshals a BitSet as a JSON structure
func (b *BitSet) MarshalJSON() ([]byte, error) {
buffer := bytes.NewBuffer(make([]byte, 0, b.BinaryStorageSize()))
_, err := b.WriteTo(buffer)
if err != nil {
return nil, err
}
// URLEncode all bytes
return json.Marshal(base64Encoding.EncodeToString(buffer.Bytes()))
}
// UnmarshalJSON unmarshals a BitSet from JSON created using MarshalJSON
func (b *BitSet) UnmarshalJSON(data []byte) error {
// Unmarshal as string
var s string
err := json.Unmarshal(data, &s)
if err != nil {
return err
}
// URLDecode string
buf, err := base64Encoding.DecodeString(s)
if err != nil {
return err
}
_, err = b.ReadFrom(bytes.NewReader(buf))
return err
}

3
vendor/github.com/willf/bitset/go.mod generated vendored Normal file
View file

@ -0,0 +1,3 @@
module github.com/willf/bitset
go 1.14

53
vendor/github.com/willf/bitset/popcnt.go generated vendored Normal file
View file

@ -0,0 +1,53 @@
package bitset
// bit population count, take from
// https://code.google.com/p/go/issues/detail?id=4988#c11
// credit: https://code.google.com/u/arnehormann/
func popcount(x uint64) (n uint64) {
x -= (x >> 1) & 0x5555555555555555
x = (x>>2)&0x3333333333333333 + x&0x3333333333333333
x += x >> 4
x &= 0x0f0f0f0f0f0f0f0f
x *= 0x0101010101010101
return x >> 56
}
func popcntSliceGo(s []uint64) uint64 {
cnt := uint64(0)
for _, x := range s {
cnt += popcount(x)
}
return cnt
}
func popcntMaskSliceGo(s, m []uint64) uint64 {
cnt := uint64(0)
for i := range s {
cnt += popcount(s[i] &^ m[i])
}
return cnt
}
func popcntAndSliceGo(s, m []uint64) uint64 {
cnt := uint64(0)
for i := range s {
cnt += popcount(s[i] & m[i])
}
return cnt
}
func popcntOrSliceGo(s, m []uint64) uint64 {
cnt := uint64(0)
for i := range s {
cnt += popcount(s[i] | m[i])
}
return cnt
}
func popcntXorSliceGo(s, m []uint64) uint64 {
cnt := uint64(0)
for i := range s {
cnt += popcount(s[i] ^ m[i])
}
return cnt
}

45
vendor/github.com/willf/bitset/popcnt_19.go generated vendored Normal file
View file

@ -0,0 +1,45 @@
// +build go1.9
package bitset
import "math/bits"
func popcntSlice(s []uint64) uint64 {
var cnt int
for _, x := range s {
cnt += bits.OnesCount64(x)
}
return uint64(cnt)
}
func popcntMaskSlice(s, m []uint64) uint64 {
var cnt int
for i := range s {
cnt += bits.OnesCount64(s[i] &^ m[i])
}
return uint64(cnt)
}
func popcntAndSlice(s, m []uint64) uint64 {
var cnt int
for i := range s {
cnt += bits.OnesCount64(s[i] & m[i])
}
return uint64(cnt)
}
func popcntOrSlice(s, m []uint64) uint64 {
var cnt int
for i := range s {
cnt += bits.OnesCount64(s[i] | m[i])
}
return uint64(cnt)
}
func popcntXorSlice(s, m []uint64) uint64 {
var cnt int
for i := range s {
cnt += bits.OnesCount64(s[i] ^ m[i])
}
return uint64(cnt)
}

68
vendor/github.com/willf/bitset/popcnt_amd64.go generated vendored Normal file
View file

@ -0,0 +1,68 @@
// +build !go1.9
// +build amd64,!appengine
package bitset
// *** the following functions are defined in popcnt_amd64.s
//go:noescape
func hasAsm() bool
// useAsm is a flag used to select the GO or ASM implementation of the popcnt function
var useAsm = hasAsm()
//go:noescape
func popcntSliceAsm(s []uint64) uint64
//go:noescape
func popcntMaskSliceAsm(s, m []uint64) uint64
//go:noescape
func popcntAndSliceAsm(s, m []uint64) uint64
//go:noescape
func popcntOrSliceAsm(s, m []uint64) uint64
//go:noescape
func popcntXorSliceAsm(s, m []uint64) uint64
func popcntSlice(s []uint64) uint64 {
if useAsm {
return popcntSliceAsm(s)
}
return popcntSliceGo(s)
}
func popcntMaskSlice(s, m []uint64) uint64 {
if useAsm {
return popcntMaskSliceAsm(s, m)
}
return popcntMaskSliceGo(s, m)
}
func popcntAndSlice(s, m []uint64) uint64 {
if useAsm {
return popcntAndSliceAsm(s, m)
}
return popcntAndSliceGo(s, m)
}
func popcntOrSlice(s, m []uint64) uint64 {
if useAsm {
return popcntOrSliceAsm(s, m)
}
return popcntOrSliceGo(s, m)
}
func popcntXorSlice(s, m []uint64) uint64 {
if useAsm {
return popcntXorSliceAsm(s, m)
}
return popcntXorSliceGo(s, m)
}

104
vendor/github.com/willf/bitset/popcnt_amd64.s generated vendored Normal file
View file

@ -0,0 +1,104 @@
// +build !go1.9
// +build amd64,!appengine
TEXT ·hasAsm(SB),4,$0-1
MOVQ $1, AX
CPUID
SHRQ $23, CX
ANDQ $1, CX
MOVB CX, ret+0(FP)
RET
#define POPCNTQ_DX_DX BYTE $0xf3; BYTE $0x48; BYTE $0x0f; BYTE $0xb8; BYTE $0xd2
TEXT ·popcntSliceAsm(SB),4,$0-32
XORQ AX, AX
MOVQ s+0(FP), SI
MOVQ s_len+8(FP), CX
TESTQ CX, CX
JZ popcntSliceEnd
popcntSliceLoop:
BYTE $0xf3; BYTE $0x48; BYTE $0x0f; BYTE $0xb8; BYTE $0x16 // POPCNTQ (SI), DX
ADDQ DX, AX
ADDQ $8, SI
LOOP popcntSliceLoop
popcntSliceEnd:
MOVQ AX, ret+24(FP)
RET
TEXT ·popcntMaskSliceAsm(SB),4,$0-56
XORQ AX, AX
MOVQ s+0(FP), SI
MOVQ s_len+8(FP), CX
TESTQ CX, CX
JZ popcntMaskSliceEnd
MOVQ m+24(FP), DI
popcntMaskSliceLoop:
MOVQ (DI), DX
NOTQ DX
ANDQ (SI), DX
POPCNTQ_DX_DX
ADDQ DX, AX
ADDQ $8, SI
ADDQ $8, DI
LOOP popcntMaskSliceLoop
popcntMaskSliceEnd:
MOVQ AX, ret+48(FP)
RET
TEXT ·popcntAndSliceAsm(SB),4,$0-56
XORQ AX, AX
MOVQ s+0(FP), SI
MOVQ s_len+8(FP), CX
TESTQ CX, CX
JZ popcntAndSliceEnd
MOVQ m+24(FP), DI
popcntAndSliceLoop:
MOVQ (DI), DX
ANDQ (SI), DX
POPCNTQ_DX_DX
ADDQ DX, AX
ADDQ $8, SI
ADDQ $8, DI
LOOP popcntAndSliceLoop
popcntAndSliceEnd:
MOVQ AX, ret+48(FP)
RET
TEXT ·popcntOrSliceAsm(SB),4,$0-56
XORQ AX, AX
MOVQ s+0(FP), SI
MOVQ s_len+8(FP), CX
TESTQ CX, CX
JZ popcntOrSliceEnd
MOVQ m+24(FP), DI
popcntOrSliceLoop:
MOVQ (DI), DX
ORQ (SI), DX
POPCNTQ_DX_DX
ADDQ DX, AX
ADDQ $8, SI
ADDQ $8, DI
LOOP popcntOrSliceLoop
popcntOrSliceEnd:
MOVQ AX, ret+48(FP)
RET
TEXT ·popcntXorSliceAsm(SB),4,$0-56
XORQ AX, AX
MOVQ s+0(FP), SI
MOVQ s_len+8(FP), CX
TESTQ CX, CX
JZ popcntXorSliceEnd
MOVQ m+24(FP), DI
popcntXorSliceLoop:
MOVQ (DI), DX
XORQ (SI), DX
POPCNTQ_DX_DX
ADDQ DX, AX
ADDQ $8, SI
ADDQ $8, DI
LOOP popcntXorSliceLoop
popcntXorSliceEnd:
MOVQ AX, ret+48(FP)
RET

24
vendor/github.com/willf/bitset/popcnt_generic.go generated vendored Normal file
View file

@ -0,0 +1,24 @@
// +build !go1.9
// +build !amd64 appengine
package bitset
func popcntSlice(s []uint64) uint64 {
return popcntSliceGo(s)
}
func popcntMaskSlice(s, m []uint64) uint64 {
return popcntMaskSliceGo(s, m)
}
func popcntAndSlice(s, m []uint64) uint64 {
return popcntAndSliceGo(s, m)
}
func popcntOrSlice(s, m []uint64) uint64 {
return popcntOrSliceGo(s, m)
}
func popcntXorSlice(s, m []uint64) uint64 {
return popcntXorSliceGo(s, m)
}

14
vendor/github.com/willf/bitset/trailing_zeros_18.go generated vendored Normal file
View file

@ -0,0 +1,14 @@
// +build !go1.9
package bitset
var deBruijn = [...]byte{
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
func trailingZeroes64(v uint64) uint {
return uint(deBruijn[((v&-v)*0x03f79d71b4ca8b09)>>58])
}

9
vendor/github.com/willf/bitset/trailing_zeros_19.go generated vendored Normal file
View file

@ -0,0 +1,9 @@
// +build go1.9
package bitset
import "math/bits"
func trailingZeroes64(v uint64) uint {
return uint(bits.TrailingZeros64(v))
}