moby/daemon/daemon_unix_test.go

360 lines
11 KiB
Go
Raw Permalink Normal View History

//go:build !windows
package daemon // import "github.com/docker/docker/daemon"
import (
"errors"
"os"
"path/filepath"
"testing"
"github.com/docker/docker/api/types/blkiodev"
containertypes "github.com/docker/docker/api/types/container"
"github.com/docker/docker/container"
"github.com/docker/docker/daemon/config"
"github.com/docker/docker/pkg/sysinfo"
"github.com/opencontainers/selinux/go-selinux"
"golang.org/x/sys/unix"
"gotest.tools/v3/assert"
is "gotest.tools/v3/assert/cmp"
)
type fakeContainerGetter struct {
containers map[string]*container.Container
}
func (f *fakeContainerGetter) GetContainer(cid string) (*container.Container, error) {
ctr, ok := f.containers[cid]
if !ok {
return nil, errors.New("container not found")
}
return ctr, nil
}
// Unix test as uses settings which are not available on Windows
func TestAdjustSharedNamespaceContainerName(t *testing.T) {
fakeID := "abcdef1234567890"
hostConfig := &containertypes.HostConfig{
IpcMode: containertypes.IpcMode("container:base"),
PidMode: containertypes.PidMode("container:base"),
NetworkMode: containertypes.NetworkMode("container:base"),
}
containerStore := &fakeContainerGetter{}
containerStore.containers = make(map[string]*container.Container)
containerStore.containers["base"] = &container.Container{
ID: fakeID,
}
adaptSharedNamespaceContainer(containerStore, hostConfig)
if hostConfig.IpcMode != containertypes.IpcMode("container:"+fakeID) {
t.Errorf("Expected IpcMode to be container:%s", fakeID)
}
if hostConfig.PidMode != containertypes.PidMode("container:"+fakeID) {
t.Errorf("Expected PidMode to be container:%s", fakeID)
}
if hostConfig.NetworkMode != containertypes.NetworkMode("container:"+fakeID) {
t.Errorf("Expected NetworkMode to be container:%s", fakeID)
}
}
// Unix test as uses settings which are not available on Windows
func TestParseSecurityOptWithDeprecatedColon(t *testing.T) {
opts := &container.SecurityOptions{}
cfg := &containertypes.HostConfig{}
// test apparmor
cfg.SecurityOpt = []string{"apparmor=test_profile"}
if err := parseSecurityOpt(opts, cfg); err != nil {
t.Fatalf("Unexpected parseSecurityOpt error: %v", err)
}
if opts.AppArmorProfile != "test_profile" {
t.Fatalf(`Unexpected AppArmorProfile, expected: "test_profile", got %q`, opts.AppArmorProfile)
}
// test seccomp
sp := "/path/to/seccomp_test.json"
cfg.SecurityOpt = []string{"seccomp=" + sp}
if err := parseSecurityOpt(opts, cfg); err != nil {
t.Fatalf("Unexpected parseSecurityOpt error: %v", err)
}
if opts.SeccompProfile != sp {
t.Fatalf("Unexpected AppArmorProfile, expected: %q, got %q", sp, opts.SeccompProfile)
}
// test valid label
cfg.SecurityOpt = []string{"label=user:USER"}
if err := parseSecurityOpt(opts, cfg); err != nil {
t.Fatalf("Unexpected parseSecurityOpt error: %v", err)
}
// test invalid label
cfg.SecurityOpt = []string{"label"}
if err := parseSecurityOpt(opts, cfg); err == nil {
t.Fatal("Expected parseSecurityOpt error, got nil")
}
// test invalid opt
cfg.SecurityOpt = []string{"test"}
if err := parseSecurityOpt(opts, cfg); err == nil {
t.Fatal("Expected parseSecurityOpt error, got nil")
}
}
func TestParseSecurityOpt(t *testing.T) {
t.Run("apparmor", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"apparmor=test_profile"},
})
assert.Check(t, err)
assert.Equal(t, secOpts.AppArmorProfile, "test_profile")
})
t.Run("apparmor using legacy separator", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"apparmor:test_profile"},
})
assert.Check(t, err)
assert.Equal(t, secOpts.AppArmorProfile, "test_profile")
})
t.Run("seccomp", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"seccomp=/path/to/seccomp_test.json"},
})
assert.Check(t, err)
assert.Equal(t, secOpts.SeccompProfile, "/path/to/seccomp_test.json")
})
t.Run("valid label", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"label=user:USER"},
})
assert.Check(t, err)
if selinux.GetEnabled() {
// TODO(thaJeztah): set expected labels here (or "partial" if depends on host)
// assert.Check(t, is.Equal(secOpts.MountLabel, ""))
// assert.Check(t, is.Equal(secOpts.ProcessLabel, ""))
} else {
assert.Check(t, is.Equal(secOpts.MountLabel, ""))
assert.Check(t, is.Equal(secOpts.ProcessLabel, ""))
}
})
t.Run("invalid label", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"label"},
})
assert.Error(t, err, `invalid --security-opt 1: "label"`)
})
t.Run("invalid option (no value)", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"unknown"},
})
assert.Error(t, err, `invalid --security-opt 1: "unknown"`)
})
t.Run("unknown option", func(t *testing.T) {
secOpts := &container.SecurityOptions{}
err := parseSecurityOpt(secOpts, &containertypes.HostConfig{
SecurityOpt: []string{"unknown=something"},
})
assert.Error(t, err, `invalid --security-opt 2: "unknown=something"`)
})
}
func TestParseNNPSecurityOptions(t *testing.T) {
daemon: reload runtimes w/o breaking containers The existing runtimes reload logic went to great lengths to replace the directory containing runtime wrapper scripts as atomically as possible within the limitations of the Linux filesystem ABI. Trouble is, atomically swapping the wrapper scripts directory solves the wrong problem! The runtime configuration is "locked in" when a container is started, including the path to the runC binary. If a container is started with a runtime which requires a daemon-managed wrapper script and then the daemon is reloaded with a config which no longer requires the wrapper script (i.e. some args -> no args, or the runtime is dropped from the config), that container would become unmanageable. Any attempts to stop, exec or otherwise perform lifecycle management operations on the container are likely to fail due to the wrapper script no longer existing at its original path. Atomically swapping the wrapper scripts is also incompatible with the read-copy-update paradigm for reloading configuration. A handler in the daemon could retain a reference to the pre-reload configuration for an indeterminate amount of time after the daemon configuration has been reloaded and updated. It is possible for the daemon to attempt to start a container using a deleted wrapper script if a request to run a container races a reload. Solve the problem of deleting referenced wrapper scripts by ensuring that all wrapper scripts are *immutable* for the lifetime of the daemon process. Any given runtime wrapper script must always exist with the same contents, no matter how many times the daemon config is reloaded, or what changes are made to the config. This is accomplished by using everyone's favourite design pattern: content-addressable storage. Each wrapper script file name is suffixed with the SHA-256 digest of its contents to (probabilistically) guarantee immutability without needing any concurrency control. Stale runtime wrapper scripts are only cleaned up on the next daemon restart. Split the derived runtimes configuration from the user-supplied configuration to have a place to store derived state without mutating the user-supplied configuration or exposing daemon internals in API struct types. Hold the derived state and the user-supplied configuration in a single struct value so that they can be updated as an atomic unit. Signed-off-by: Cory Snider <csnider@mirantis.com>
2022-08-31 20:12:30 +00:00
daemonCfg := &configStore{Config: config.Config{NoNewPrivileges: true}}
daemon := &Daemon{}
daemon.configStore.Store(daemonCfg)
opts := &container.SecurityOptions{}
cfg := &containertypes.HostConfig{}
// test NNP when "daemon:true" and "no-new-privileges=false""
cfg.SecurityOpt = []string{"no-new-privileges=false"}
daemon: reload runtimes w/o breaking containers The existing runtimes reload logic went to great lengths to replace the directory containing runtime wrapper scripts as atomically as possible within the limitations of the Linux filesystem ABI. Trouble is, atomically swapping the wrapper scripts directory solves the wrong problem! The runtime configuration is "locked in" when a container is started, including the path to the runC binary. If a container is started with a runtime which requires a daemon-managed wrapper script and then the daemon is reloaded with a config which no longer requires the wrapper script (i.e. some args -> no args, or the runtime is dropped from the config), that container would become unmanageable. Any attempts to stop, exec or otherwise perform lifecycle management operations on the container are likely to fail due to the wrapper script no longer existing at its original path. Atomically swapping the wrapper scripts is also incompatible with the read-copy-update paradigm for reloading configuration. A handler in the daemon could retain a reference to the pre-reload configuration for an indeterminate amount of time after the daemon configuration has been reloaded and updated. It is possible for the daemon to attempt to start a container using a deleted wrapper script if a request to run a container races a reload. Solve the problem of deleting referenced wrapper scripts by ensuring that all wrapper scripts are *immutable* for the lifetime of the daemon process. Any given runtime wrapper script must always exist with the same contents, no matter how many times the daemon config is reloaded, or what changes are made to the config. This is accomplished by using everyone's favourite design pattern: content-addressable storage. Each wrapper script file name is suffixed with the SHA-256 digest of its contents to (probabilistically) guarantee immutability without needing any concurrency control. Stale runtime wrapper scripts are only cleaned up on the next daemon restart. Split the derived runtimes configuration from the user-supplied configuration to have a place to store derived state without mutating the user-supplied configuration or exposing daemon internals in API struct types. Hold the derived state and the user-supplied configuration in a single struct value so that they can be updated as an atomic unit. Signed-off-by: Cory Snider <csnider@mirantis.com>
2022-08-31 20:12:30 +00:00
if err := daemon.parseSecurityOpt(&daemonCfg.Config, opts, cfg); err != nil {
t.Fatalf("Unexpected daemon.parseSecurityOpt error: %v", err)
}
if opts.NoNewPrivileges {
t.Fatalf("container.NoNewPrivileges should be FALSE: %v", opts.NoNewPrivileges)
}
// test NNP when "daemon:false" and "no-new-privileges=true""
daemonCfg.NoNewPrivileges = false
cfg.SecurityOpt = []string{"no-new-privileges=true"}
daemon: reload runtimes w/o breaking containers The existing runtimes reload logic went to great lengths to replace the directory containing runtime wrapper scripts as atomically as possible within the limitations of the Linux filesystem ABI. Trouble is, atomically swapping the wrapper scripts directory solves the wrong problem! The runtime configuration is "locked in" when a container is started, including the path to the runC binary. If a container is started with a runtime which requires a daemon-managed wrapper script and then the daemon is reloaded with a config which no longer requires the wrapper script (i.e. some args -> no args, or the runtime is dropped from the config), that container would become unmanageable. Any attempts to stop, exec or otherwise perform lifecycle management operations on the container are likely to fail due to the wrapper script no longer existing at its original path. Atomically swapping the wrapper scripts is also incompatible with the read-copy-update paradigm for reloading configuration. A handler in the daemon could retain a reference to the pre-reload configuration for an indeterminate amount of time after the daemon configuration has been reloaded and updated. It is possible for the daemon to attempt to start a container using a deleted wrapper script if a request to run a container races a reload. Solve the problem of deleting referenced wrapper scripts by ensuring that all wrapper scripts are *immutable* for the lifetime of the daemon process. Any given runtime wrapper script must always exist with the same contents, no matter how many times the daemon config is reloaded, or what changes are made to the config. This is accomplished by using everyone's favourite design pattern: content-addressable storage. Each wrapper script file name is suffixed with the SHA-256 digest of its contents to (probabilistically) guarantee immutability without needing any concurrency control. Stale runtime wrapper scripts are only cleaned up on the next daemon restart. Split the derived runtimes configuration from the user-supplied configuration to have a place to store derived state without mutating the user-supplied configuration or exposing daemon internals in API struct types. Hold the derived state and the user-supplied configuration in a single struct value so that they can be updated as an atomic unit. Signed-off-by: Cory Snider <csnider@mirantis.com>
2022-08-31 20:12:30 +00:00
if err := daemon.parseSecurityOpt(&daemonCfg.Config, opts, cfg); err != nil {
t.Fatalf("Unexpected daemon.parseSecurityOpt error: %v", err)
}
if !opts.NoNewPrivileges {
t.Fatalf("container.NoNewPrivileges should be TRUE: %v", opts.NoNewPrivileges)
}
}
func TestVerifyPlatformContainerResources(t *testing.T) {
t.Parallel()
var (
no = false
yes = true
)
withMemoryLimit := func(si *sysinfo.SysInfo) {
si.MemoryLimit = true
}
withSwapLimit := func(si *sysinfo.SysInfo) {
si.SwapLimit = true
}
withOomKillDisable := func(si *sysinfo.SysInfo) {
si.OomKillDisable = true
}
tests := []struct {
name string
resources containertypes.Resources
sysInfo sysinfo.SysInfo
update bool
expectedWarnings []string
}{
{
name: "no-oom-kill-disable",
resources: containertypes.Resources{},
sysInfo: sysInfo(t, withMemoryLimit),
expectedWarnings: []string{},
},
{
name: "oom-kill-disable-disabled",
resources: containertypes.Resources{
OomKillDisable: &no,
},
sysInfo: sysInfo(t, withMemoryLimit),
expectedWarnings: []string{},
},
{
name: "oom-kill-disable-not-supported",
resources: containertypes.Resources{
OomKillDisable: &yes,
},
sysInfo: sysInfo(t, withMemoryLimit),
expectedWarnings: []string{
"Your kernel does not support OomKillDisable. OomKillDisable discarded.",
},
},
{
name: "oom-kill-disable-without-memory-constraints",
resources: containertypes.Resources{
OomKillDisable: &yes,
Memory: 0,
},
sysInfo: sysInfo(t, withMemoryLimit, withOomKillDisable, withSwapLimit),
expectedWarnings: []string{
"OOM killer is disabled for the container, but no memory limit is set, this can result in the system running out of resources.",
},
},
{
name: "oom-kill-disable-with-memory-constraints-but-no-memory-limit-support",
resources: containertypes.Resources{
OomKillDisable: &yes,
Memory: linuxMinMemory,
},
sysInfo: sysInfo(t, withOomKillDisable),
expectedWarnings: []string{
"Your kernel does not support memory limit capabilities or the cgroup is not mounted. Limitation discarded.",
"OOM killer is disabled for the container, but no memory limit is set, this can result in the system running out of resources.",
},
},
{
name: "oom-kill-disable-with-memory-constraints",
resources: containertypes.Resources{
OomKillDisable: &yes,
Memory: linuxMinMemory,
},
sysInfo: sysInfo(t, withMemoryLimit, withOomKillDisable, withSwapLimit),
expectedWarnings: []string{},
},
}
for _, tc := range tests {
tc := tc
t.Run(tc.name, func(t *testing.T) {
t.Parallel()
warnings, err := verifyPlatformContainerResources(&tc.resources, &tc.sysInfo, tc.update)
assert.NilError(t, err)
for _, w := range tc.expectedWarnings {
assert.Assert(t, is.Contains(warnings, w))
}
})
}
}
func sysInfo(t *testing.T, opts ...func(*sysinfo.SysInfo)) sysinfo.SysInfo {
t.Helper()
si := sysinfo.SysInfo{}
for _, opt := range opts {
opt(&si)
}
if si.OomKillDisable {
t.Log(t.Name(), "OOM disable supported")
}
return si
}
const (
// prepare major 0x1FD(509 in decimal) and minor 0x130(304)
DEVNO = 0x11FD30
MAJOR = 509
MINOR = 304
WEIGHT = 1024
)
func deviceTypeMock(t *testing.T, testAndCheck func(string)) {
if os.Getuid() != 0 {
t.Skip("root required") // for mknod
}
t.Parallel()
tempDir, err := os.MkdirTemp("", "tempDevDir"+t.Name())
assert.NilError(t, err, "create temp file")
tempFile := filepath.Join(tempDir, "dev")
defer os.RemoveAll(tempDir)
if err = unix.Mknod(tempFile, unix.S_IFCHR, DEVNO); err != nil {
t.Fatalf("mknod error %s(%x): %v", tempFile, DEVNO, err)
}
testAndCheck(tempFile)
}
func TestGetBlkioWeightDevices(t *testing.T) {
deviceTypeMock(t, func(tempFile string) {
mockResource := containertypes.Resources{
BlkioWeightDevice: []*blkiodev.WeightDevice{{Path: tempFile, Weight: WEIGHT}},
}
weightDevs, err := getBlkioWeightDevices(mockResource)
assert.NilError(t, err, "getBlkioWeightDevices")
assert.Check(t, is.Len(weightDevs, 1), "getBlkioWeightDevices")
assert.Check(t, weightDevs[0].Major == MAJOR, "get major device type")
assert.Check(t, weightDevs[0].Minor == MINOR, "get minor device type")
assert.Check(t, *weightDevs[0].Weight == WEIGHT, "get device weight")
})
}
func TestGetBlkioThrottleDevices(t *testing.T) {
deviceTypeMock(t, func(tempFile string) {
mockDevs := []*blkiodev.ThrottleDevice{{Path: tempFile, Rate: WEIGHT}}
retDevs, err := getBlkioThrottleDevices(mockDevs)
assert.NilError(t, err, "getBlkioThrottleDevices")
assert.Check(t, is.Len(retDevs, 1), "getBlkioThrottleDevices")
assert.Check(t, retDevs[0].Major == MAJOR, "get major device type")
assert.Check(t, retDevs[0].Minor == MINOR, "get minor device type")
assert.Check(t, retDevs[0].Rate == WEIGHT, "get device rate")
})
}