ladybird/AK/Vector.h
2019-05-21 01:36:36 +02:00

392 lines
11 KiB
C++

#pragma once
#include <AK/Assertions.h>
#include <AK/StdLibExtras.h>
#include <AK/kmalloc.h>
namespace AK {
template<typename T, int inline_capacity = 0>
class Vector {
public:
Vector()
: m_capacity(inline_capacity)
{
}
~Vector()
{
clear();
}
Vector(Vector&& other)
: m_size(other.m_size)
, m_capacity(other.m_capacity)
, m_outline_buffer(other.m_outline_buffer)
{
if constexpr (inline_capacity > 0) {
if (!m_outline_buffer) {
for (int i = 0; i < m_size; ++i) {
new (&inline_buffer()[i]) T(move(other.inline_buffer()[i]));
other.inline_buffer()[i].~T();
}
}
}
other.m_outline_buffer = nullptr;
other.m_size = 0;
other.reset_capacity();
}
Vector(const Vector& other)
{
ensure_capacity(other.size());
for (int i = 0; i < other.size(); ++i)
unchecked_append(other[i]);
}
// FIXME: What about assigning from a vector with lower inline capacity?
Vector& operator=(Vector&& other)
{
if (this != &other) {
clear();
m_size = other.m_size;
m_capacity = other.m_capacity;
m_outline_buffer = other.m_outline_buffer;
if constexpr (inline_capacity > 0) {
if (!m_outline_buffer) {
for (int i = 0; i < m_size; ++i) {
new (&inline_buffer()[i]) T(move(other.inline_buffer()[i]));
other.inline_buffer()[i].~T();
}
}
}
other.m_outline_buffer = nullptr;
other.m_size = 0;
other.reset_capacity();
}
return *this;
}
void clear()
{
clear_with_capacity();
if (m_outline_buffer) {
kfree(m_outline_buffer);
m_outline_buffer = nullptr;
}
reset_capacity();
}
void clear_with_capacity()
{
for (int i = 0; i < m_size; ++i)
data()[i].~T();
m_size = 0;
}
bool contains_slow(const T& value) const
{
for (int i = 0; i < size(); ++i) {
if (at(i) == value)
return true;
}
return false;
}
// NOTE: Vector::is_null() exists for the benefit of String::copy().
bool is_null() const { return is_empty(); }
bool is_empty() const { return size() == 0; }
int size() const { return m_size; }
int capacity() const { return m_capacity; }
T* data()
{
if constexpr (inline_capacity > 0)
return m_outline_buffer ? m_outline_buffer : inline_buffer();
return m_outline_buffer;
}
const T* data() const
{
if constexpr (inline_capacity > 0)
return m_outline_buffer ? m_outline_buffer : inline_buffer();
return m_outline_buffer;
}
const T& at(int i) const { ASSERT(i >= 0 && i < m_size); return data()[i]; }
T& at(int i) { ASSERT(i >= 0 && i < m_size); return data()[i]; }
const T& operator[](int i) const { return at(i); }
T& operator[](int i) { return at(i); }
const T& first() const { return at(0); }
T& first() { return at(0); }
const T& last() const { return at(size() - 1); }
T& last() { return at(size() - 1); }
T take_last()
{
ASSERT(!is_empty());
T value = move(last());
last().~T();
--m_size;
return value;
}
T take_first()
{
ASSERT(!is_empty());
T value = move(first());
remove(0);
return value;
}
void remove(int index)
{
ASSERT(index < m_size);
at(index).~T();
for (int i = index + 1; i < m_size; ++i) {
new (slot(i - 1)) T(move(at(i)));
at(i).~T();
}
--m_size;
}
void insert(int index, T&& value)
{
ASSERT(index <= size());
if (index == size())
return append(move(value));
grow_capacity(size() + 1);
++m_size;
for (int i = size() - 1; i > index; --i) {
new (slot(i)) T(move(at(i - 1)));
at(i - 1).~T();
}
new (slot(index)) T(move(value));
}
void insert(int index, const T& value)
{
ASSERT(index <= size());
if (index == size())
return append(value);
grow_capacity(size() + 1);
++m_size;
for (int i = size() - 1; i > index; --i) {
new (slot(i)) T(move(at(i - 1)));
at(i - 1).~T();
}
new (slot(index)) T(value);
}
Vector& operator=(const Vector& other)
{
if (this != &other) {
clear();
ensure_capacity(other.size());
for (const auto& v : other)
unchecked_append(v);
}
return *this;
}
void append(Vector&& other)
{
if (is_empty()) {
*this = move(other);
return;
}
Vector tmp = move(other);
grow_capacity(size() + tmp.size());
for (auto&& v : tmp)
unchecked_append(move(v));
}
template<typename Callback>
void remove_first_matching(Callback callback)
{
for (int i = 0; i < size(); ++i) {
if (callback(at(i))) {
remove(i);
return;
}
}
}
void unchecked_append(T&& value)
{
ASSERT((size() + 1) <= capacity());
new (slot(m_size)) T(move(value));
++m_size;
}
void unchecked_append(const T& value)
{
new (slot(m_size)) T(value);
++m_size;
}
void append(T&& value)
{
grow_capacity(size() + 1);
new (slot(m_size)) T(move(value));
++m_size;
}
void append(const T& value)
{
grow_capacity(size() + 1);
new (slot(m_size)) T(value);
++m_size;
}
void prepend(const T& value)
{
grow_capacity(size() + 1);
for (int i = size(); i > 0; --i) {
new (slot(i)) T(move(at(i - 1)));
at(i - 1).~T();
}
new (slot(0)) T(value);
++m_size;
}
void append(const T* values, int count)
{
if (!count)
return;
grow_capacity(size() + count);
for (int i = 0; i < count; ++i)
new (slot(m_size + i)) T(values[i]);
m_size += count;
}
void grow_capacity(int needed_capacity)
{
if (m_capacity >= needed_capacity)
return;
ensure_capacity(padded_capacity(needed_capacity));
}
void ensure_capacity(int needed_capacity)
{
if (m_capacity >= needed_capacity)
return;
int new_capacity = needed_capacity;
auto* new_buffer = (T*)kmalloc(new_capacity * sizeof(T));
for (int i = 0; i < m_size; ++i) {
new (&new_buffer[i]) T(move(at(i)));
at(i).~T();
}
if (m_outline_buffer)
kfree(m_outline_buffer);
m_outline_buffer = new_buffer;
m_capacity = new_capacity;
}
void resize(int new_size)
{
if (new_size == size())
return;
if (!new_size) {
clear();
return;
}
if (new_size > size()) {
ensure_capacity(new_size);
for (int i = size(); i < new_size; ++i)
new (slot(i)) T;
} else {
for (int i = new_size; i < size(); ++i)
at(i).~T();
}
m_size = new_size;
}
class Iterator {
public:
bool operator!=(const Iterator& other) { return m_index != other.m_index; }
bool operator==(const Iterator& other) { return m_index == other.m_index; }
bool operator<(const Iterator& other) { return m_index < other.m_index; }
bool operator>(const Iterator& other) { return m_index > other.m_index; }
bool operator>=(const Iterator& other) { return m_index >= other.m_index; }
Iterator& operator++() { ++m_index; return *this; }
Iterator& operator--() { --m_index; return *this; }
Iterator operator-(int value) { return { m_vector, m_index - value }; }
Iterator operator+(int value) { return { m_vector, m_index + value }; }
Iterator& operator=(const Iterator& other)
{
m_index = other.m_index;
return *this;
}
T& operator*() { return m_vector[m_index]; }
int operator-(const Iterator& other) { return m_index - other.m_index; }
private:
friend class Vector;
Iterator(Vector& vector, int index) : m_vector(vector), m_index(index) { }
Vector& m_vector;
int m_index { 0 };
};
Iterator begin() { return Iterator(*this, 0); }
Iterator end() { return Iterator(*this, size()); }
class ConstIterator {
public:
bool operator!=(const ConstIterator& other) { return m_index != other.m_index; }
bool operator==(const ConstIterator& other) { return m_index == other.m_index; }
bool operator<(const ConstIterator& other) { return m_index < other.m_index; }
bool operator>(const ConstIterator& other) { return m_index > other.m_index; }
bool operator>=(const ConstIterator& other) { return m_index >= other.m_index; }
ConstIterator& operator++() { ++m_index; return *this; }
ConstIterator& operator--() { --m_index; return *this; }
ConstIterator operator-(int value) { return { m_vector, m_index - value }; }
ConstIterator operator+(int value) { return { m_vector, m_index + value }; }
ConstIterator& operator=(const ConstIterator& other)
{
m_index = other.m_index;
return *this;
}
const T& operator*() const { return m_vector[m_index]; }
int operator-(const ConstIterator& other) { return m_index - other.m_index; }
private:
friend class Vector;
ConstIterator(const Vector& vector, const int index) : m_vector(vector), m_index(index) { }
const Vector& m_vector;
int m_index { 0 };
};
ConstIterator begin() const { return ConstIterator(*this, 0); }
ConstIterator end() const { return ConstIterator(*this, size()); }
private:
void reset_capacity()
{
m_capacity = inline_capacity;
}
static int padded_capacity(int capacity)
{
return max(int(4), capacity + (capacity / 4) + 4);
}
T* slot(int i) { return &data()[i]; }
const T* slot(int i) const { return &data()[i]; }
T* inline_buffer() { static_assert(inline_capacity > 0); return reinterpret_cast<T*>(m_inline_buffer_storage); }
const T* inline_buffer() const { static_assert(inline_capacity > 0); return reinterpret_cast<const T*>(m_inline_buffer_storage); }
int m_size { 0 };
int m_capacity { 0 };
alignas(T) byte m_inline_buffer_storage[sizeof(T) * inline_capacity];
T* m_outline_buffer { nullptr };
};
}
using AK::Vector;