mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-01 12:00:27 +00:00
451 lines
14 KiB
C++
451 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Math.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/TypeCasts.h>
|
|
#include <LibGfx/BoundingBox.h>
|
|
#include <LibGfx/DeprecatedPainter.h>
|
|
#include <LibGfx/DeprecatedPath.h>
|
|
#include <LibGfx/Font/ScaledFont.h>
|
|
#include <LibGfx/TextLayout.h>
|
|
|
|
namespace Gfx {
|
|
|
|
void DeprecatedPath::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
|
|
{
|
|
float sin_x_rotation;
|
|
float cos_x_rotation;
|
|
AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
|
|
auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
|
|
float sin_angle;
|
|
float cos_angle;
|
|
AK::sincos(t, sin_angle, cos_angle);
|
|
point = FloatPoint {
|
|
center.x()
|
|
+ radii.width() * cos_x_rotation * cos_angle
|
|
- radii.height() * sin_x_rotation * sin_angle,
|
|
center.y()
|
|
+ radii.width() * sin_x_rotation * cos_angle
|
|
+ radii.height() * cos_x_rotation * sin_angle,
|
|
};
|
|
derivative = FloatPoint {
|
|
-radii.width() * cos_x_rotation * sin_angle
|
|
- radii.height() * sin_x_rotation * cos_angle,
|
|
-radii.width() * sin_x_rotation * sin_angle
|
|
+ radii.height() * cos_x_rotation * cos_angle,
|
|
};
|
|
};
|
|
auto approximate_arc_between = [&](float start_angle, float end_angle) {
|
|
auto t = AK::tan((end_angle - start_angle) / 2);
|
|
auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
|
|
FloatPoint p1, d1;
|
|
FloatPoint p2, d2;
|
|
arc_point_and_derivative(start_angle, p1, d1);
|
|
arc_point_and_derivative(end_angle, p2, d2);
|
|
auto q1 = p1 + d1.scaled(alpha, alpha);
|
|
auto q2 = p2 - d2.scaled(alpha, alpha);
|
|
cubic_bezier_curve_to(q1, q2, p2);
|
|
};
|
|
// FIXME: Come up with a more mathematically sound step size (using some error calculation).
|
|
auto step = theta_delta;
|
|
int step_count = 1;
|
|
while (fabs(step) > AK::Pi<float> / 4) {
|
|
step /= 2;
|
|
step_count *= 2;
|
|
}
|
|
float prev = theta;
|
|
float t = prev + step;
|
|
for (int i = 0; i < step_count; i++, prev = t, t += step)
|
|
approximate_arc_between(prev, t);
|
|
}
|
|
|
|
void DeprecatedPath::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
|
|
{
|
|
auto next_point = point;
|
|
|
|
double rx = radii.width();
|
|
double ry = radii.height();
|
|
|
|
double x_axis_rotation_s;
|
|
double x_axis_rotation_c;
|
|
AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
|
|
FloatPoint last_point = this->last_point();
|
|
|
|
// Step 1 of out-of-range radii correction
|
|
if (rx == 0.0 || ry == 0.0) {
|
|
append_segment<DeprecatedPathSegment::LineTo>(next_point);
|
|
return;
|
|
}
|
|
|
|
// Step 2 of out-of-range radii correction
|
|
if (rx < 0)
|
|
rx *= -1.0;
|
|
if (ry < 0)
|
|
ry *= -1.0;
|
|
|
|
// POSSIBLY HACK: Handle the case where both points are the same.
|
|
auto same_endpoints = next_point == last_point;
|
|
if (same_endpoints) {
|
|
if (!large_arc) {
|
|
// Nothing is going to be drawn anyway.
|
|
return;
|
|
}
|
|
|
|
// Move the endpoint by a small amount to avoid division by zero.
|
|
next_point.translate_by(0.01f, 0.01f);
|
|
}
|
|
|
|
// Find (cx, cy), theta_1, theta_delta
|
|
// Step 1: Compute (x1', y1')
|
|
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
|
|
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
|
|
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
|
|
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
|
|
|
|
// Step 2: Compute (cx', cy')
|
|
double x1p_sq = x1p * x1p;
|
|
double y1p_sq = y1p * y1p;
|
|
double rx_sq = rx * rx;
|
|
double ry_sq = ry * ry;
|
|
|
|
// Step 3 of out-of-range radii correction
|
|
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
|
|
double multiplier;
|
|
|
|
if (lambda > 1.0) {
|
|
auto lambda_sqrt = AK::sqrt(lambda);
|
|
rx *= lambda_sqrt;
|
|
ry *= lambda_sqrt;
|
|
multiplier = 0.0;
|
|
} else {
|
|
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
|
|
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
|
|
multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
|
|
}
|
|
|
|
if (large_arc == sweep)
|
|
multiplier *= -1.0;
|
|
|
|
double cxp = multiplier * rx * y1p / ry;
|
|
double cyp = multiplier * -ry * x1p / rx;
|
|
|
|
// Step 3: Compute (cx, cy) from (cx', cy')
|
|
x_avg = (last_point.x() + next_point.x()) / 2.0f;
|
|
y_avg = (last_point.y() + next_point.y()) / 2.0f;
|
|
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
|
|
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
|
|
|
|
double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
|
|
double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
|
|
|
|
auto theta_delta = theta_2 - theta_1;
|
|
|
|
if (!sweep && theta_delta > 0.0) {
|
|
theta_delta -= 2 * AK::Pi<double>;
|
|
} else if (sweep && theta_delta < 0) {
|
|
theta_delta += 2 * AK::Pi<double>;
|
|
}
|
|
|
|
approximate_elliptical_arc_with_cubic_beziers(
|
|
{ cx, cy },
|
|
{ rx, ry },
|
|
x_axis_rotation,
|
|
theta_1,
|
|
theta_delta);
|
|
}
|
|
|
|
void DeprecatedPath::close()
|
|
{
|
|
// If there's no `moveto` starting this subpath assume the start is (0, 0).
|
|
FloatPoint first_point_in_subpath = { 0, 0 };
|
|
for (auto it = end(); it-- != begin();) {
|
|
auto segment = *it;
|
|
if (segment.command() == DeprecatedPathSegment::MoveTo) {
|
|
first_point_in_subpath = segment.point();
|
|
break;
|
|
}
|
|
}
|
|
if (first_point_in_subpath != last_point())
|
|
line_to(first_point_in_subpath);
|
|
}
|
|
|
|
void DeprecatedPath::close_all_subpaths()
|
|
{
|
|
auto it = begin();
|
|
// Note: Get the end outside the loop as closing subpaths will move the end.
|
|
auto end = this->end();
|
|
while (it < end) {
|
|
// If there's no `moveto` starting this subpath assume the start is (0, 0).
|
|
FloatPoint first_point_in_subpath = { 0, 0 };
|
|
auto segment = *it;
|
|
if (segment.command() == DeprecatedPathSegment::MoveTo) {
|
|
first_point_in_subpath = segment.point();
|
|
++it;
|
|
}
|
|
// Find the end of the current subpath.
|
|
FloatPoint cursor = first_point_in_subpath;
|
|
while (it < end) {
|
|
auto segment = *it;
|
|
if (segment.command() == DeprecatedPathSegment::MoveTo)
|
|
break;
|
|
cursor = segment.point();
|
|
++it;
|
|
}
|
|
// Close the subpath.
|
|
if (first_point_in_subpath != cursor) {
|
|
move_to(cursor);
|
|
line_to(first_point_in_subpath);
|
|
}
|
|
}
|
|
}
|
|
|
|
ByteString DeprecatedPath::to_byte_string() const
|
|
{
|
|
// Dumps this path as an SVG compatible string.
|
|
StringBuilder builder;
|
|
if (is_empty() || m_commands.first() != DeprecatedPathSegment::MoveTo)
|
|
builder.append("M 0,0"sv);
|
|
for (auto segment : *this) {
|
|
if (!builder.is_empty())
|
|
builder.append(' ');
|
|
switch (segment.command()) {
|
|
case DeprecatedPathSegment::MoveTo:
|
|
builder.append('M');
|
|
break;
|
|
case DeprecatedPathSegment::LineTo:
|
|
builder.append('L');
|
|
break;
|
|
case DeprecatedPathSegment::QuadraticBezierCurveTo:
|
|
builder.append('Q');
|
|
break;
|
|
case DeprecatedPathSegment::CubicBezierCurveTo:
|
|
builder.append('C');
|
|
break;
|
|
}
|
|
for (auto point : segment.points())
|
|
builder.appendff(" {},{}", point.x(), point.y());
|
|
}
|
|
return builder.to_byte_string();
|
|
}
|
|
|
|
void DeprecatedPath::segmentize_path()
|
|
{
|
|
Vector<FloatLine> segments;
|
|
FloatBoundingBox bounding_box;
|
|
|
|
auto add_line = [&](auto const& p0, auto const& p1) {
|
|
segments.append({ p0, p1 });
|
|
bounding_box.add_point(p1);
|
|
};
|
|
|
|
FloatPoint cursor { 0, 0 };
|
|
for (auto segment : *this) {
|
|
switch (segment.command()) {
|
|
case DeprecatedPathSegment::MoveTo:
|
|
bounding_box.add_point(segment.point());
|
|
break;
|
|
case DeprecatedPathSegment::LineTo: {
|
|
add_line(cursor, segment.point());
|
|
break;
|
|
}
|
|
case DeprecatedPathSegment::QuadraticBezierCurveTo: {
|
|
DeprecatedPainter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
|
|
add_line(p0, p1);
|
|
});
|
|
break;
|
|
}
|
|
case DeprecatedPathSegment::CubicBezierCurveTo: {
|
|
DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
|
|
add_line(p0, p1);
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
cursor = segment.point();
|
|
}
|
|
|
|
m_split_lines = SplitLines { move(segments), bounding_box };
|
|
}
|
|
|
|
DeprecatedPath DeprecatedPath::copy_transformed(Gfx::AffineTransform const& transform) const
|
|
{
|
|
DeprecatedPath result;
|
|
result.m_commands = m_commands;
|
|
result.m_points.ensure_capacity(m_points.size());
|
|
for (auto point : m_points)
|
|
result.m_points.unchecked_append(transform.map(point));
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
struct RoundTrip {
|
|
RoundTrip(ReadonlySpan<T> span)
|
|
: m_span(span)
|
|
{
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return m_span.size() * 2 - 1;
|
|
}
|
|
|
|
T const& operator[](size_t index) const
|
|
{
|
|
// Follow the path:
|
|
if (index < m_span.size())
|
|
return m_span[index];
|
|
// Then in reverse:
|
|
if (index < size())
|
|
return m_span[size() - index - 1];
|
|
// Then wrap around again:
|
|
return m_span[index - size() + 1];
|
|
}
|
|
|
|
private:
|
|
ReadonlySpan<T> m_span;
|
|
};
|
|
|
|
DeprecatedPath DeprecatedPath::stroke_to_fill(float thickness) const
|
|
{
|
|
// Note: This convolves a polygon with the path using the algorithm described
|
|
// in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
|
|
|
|
VERIFY(thickness > 0);
|
|
|
|
auto lines = split_lines();
|
|
if (lines.is_empty())
|
|
return DeprecatedPath {};
|
|
|
|
// Paths can be disconnected, which a pain to deal with, so split it up.
|
|
Vector<Vector<FloatPoint>> segments;
|
|
segments.append({ lines.first().a() });
|
|
for (auto& line : lines) {
|
|
if (line.a() == segments.last().last()) {
|
|
segments.last().append(line.b());
|
|
} else {
|
|
segments.append({ line.a(), line.b() });
|
|
}
|
|
}
|
|
|
|
constexpr auto flatness = 0.15f;
|
|
auto pen_vertex_count = 4;
|
|
if (thickness > flatness) {
|
|
pen_vertex_count = max(
|
|
static_cast<int>(ceilf(AK::Pi<float>
|
|
/ acosf(1 - (2 * flatness) / thickness))),
|
|
pen_vertex_count);
|
|
}
|
|
|
|
if (pen_vertex_count % 2 == 1)
|
|
pen_vertex_count += 1;
|
|
|
|
Vector<FloatPoint, 128> pen_vertices;
|
|
pen_vertices.ensure_capacity(pen_vertex_count);
|
|
|
|
// Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
|
|
// to be a circle (or an approximation of one), but other shapes are untested.
|
|
float theta = 0;
|
|
float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
|
|
for (int i = 0; i < pen_vertex_count; i++) {
|
|
float sin_theta;
|
|
float cos_theta;
|
|
AK::sincos(theta, sin_theta, cos_theta);
|
|
pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
|
|
theta -= theta_delta;
|
|
}
|
|
|
|
auto wrapping_index = [](auto& vertices, auto index) {
|
|
return vertices[(index + vertices.size()) % vertices.size()];
|
|
};
|
|
|
|
auto angle_between = [](auto p1, auto p2) {
|
|
auto delta = p2 - p1;
|
|
return atan2f(delta.y(), delta.x());
|
|
};
|
|
|
|
struct ActiveRange {
|
|
float start;
|
|
float end;
|
|
|
|
bool in_range(float angle) const
|
|
{
|
|
// Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
|
|
return ((angle <= start && angle >= end)
|
|
|| (start < end && angle <= start)
|
|
|| (start < end && angle >= end));
|
|
}
|
|
};
|
|
|
|
Vector<ActiveRange, 128> active_ranges;
|
|
active_ranges.ensure_capacity(pen_vertices.size());
|
|
for (auto i = 0; i < pen_vertex_count; i++) {
|
|
active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
|
|
angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
|
|
}
|
|
|
|
auto clockwise = [](float current_angle, float target_angle) {
|
|
if (target_angle < 0)
|
|
target_angle += AK::Pi<float> * 2;
|
|
if (current_angle < 0)
|
|
current_angle += AK::Pi<float> * 2;
|
|
if (target_angle < current_angle)
|
|
target_angle += AK::Pi<float> * 2;
|
|
return (target_angle - current_angle) <= AK::Pi<float>;
|
|
};
|
|
|
|
DeprecatedPath convolution;
|
|
for (auto& segment : segments) {
|
|
RoundTrip<FloatPoint> shape { segment };
|
|
|
|
bool first = true;
|
|
auto add_vertex = [&](auto v) {
|
|
if (first) {
|
|
convolution.move_to(v);
|
|
first = false;
|
|
} else {
|
|
convolution.line_to(v);
|
|
}
|
|
};
|
|
|
|
auto shape_idx = 0u;
|
|
|
|
auto slope = [&] {
|
|
return angle_between(shape[shape_idx], shape[shape_idx + 1]);
|
|
};
|
|
|
|
auto start_slope = slope();
|
|
// Note: At least one range must be active.
|
|
auto active = *active_ranges.find_first_index_if([&](auto& range) {
|
|
return range.in_range(start_slope);
|
|
});
|
|
|
|
while (shape_idx < shape.size()) {
|
|
add_vertex(shape[shape_idx] + pen_vertices[active]);
|
|
auto slope_now = slope();
|
|
auto range = active_ranges[active];
|
|
if (range.in_range(slope_now)) {
|
|
shape_idx++;
|
|
} else {
|
|
if (clockwise(slope_now, range.end)) {
|
|
if (active == static_cast<size_t>(pen_vertex_count - 1))
|
|
active = 0;
|
|
else
|
|
active++;
|
|
} else {
|
|
if (active == 0)
|
|
active = pen_vertex_count - 1;
|
|
else
|
|
active--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return convolution;
|
|
}
|
|
|
|
}
|