ladybird/Kernel/init.cpp
Idan Horowitz ba9b3dc656 Kernel: Implement a PCI Serial Device driver
This simple driver simply finds a device in a device definitions list
and then sets up a SerialDevice instance based on the definition.

The driver currently only supports "WCH CH382 2S" pci serial boards,
as that is the only device available for me to test with, but most
other pci serial devices should be as easily addable as adding a
board_definitions entry.
2021-05-17 18:15:25 +02:00

318 lines
10 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Types.h>
#include <Kernel/ACPI/DynamicParser.h>
#include <Kernel/ACPI/Initialize.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/Arch/x86/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/CommandLine.h>
#include <Kernel/DMI.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/HID/HIDManagement.h>
#include <Kernel/Devices/MemoryDevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/PCISerialDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SB16.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/USB/UHCIController.h>
#include <Kernel/Devices/VMWareBackdoor.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Graphics/GraphicsManagement.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Interrupts/PIC.h>
#include <Kernel/KSyms.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NE2000NetworkAdapter.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/Panic.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Random.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Storage/StorageManagement.h>
#include <Kernel/TTY/ConsoleManagement.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/Tasks/FinalizerTask.h>
#include <Kernel/Tasks/SyncTask.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VirtIO/VirtIO.h>
#include <Kernel/WorkQueue.h>
#include <Kernel/kstdio.h>
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_heap_ctors;
extern ctor_func_t end_heap_ctors;
extern ctor_func_t start_ctors;
extern ctor_func_t end_ctors;
extern u32 __stack_chk_guard;
u32 __stack_chk_guard;
extern "C" u8* start_of_safemem_text;
extern "C" u8* end_of_safemem_text;
extern "C" u8* start_of_safemem_atomic_text;
extern "C" u8* end_of_safemem_atomic_text;
extern "C" u8* end_of_kernel_image;
multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
size_t multiboot_copy_boot_modules_count;
extern "C" const char kernel_cmdline[4096];
namespace Kernel {
[[noreturn]] static void init_stage2(void*);
static void setup_serial_debug();
// boot.S expects these functions to exactly have the following signatures.
// We declare them here to ensure their signatures don't accidentally change.
extern "C" void init_finished(u32 cpu) __attribute__((used));
extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info);
extern "C" [[noreturn]] void init();
READONLY_AFTER_INIT VirtualConsole* tty0;
static Processor s_bsp_processor; // global but let's keep it "private"
// SerenityOS Kernel C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
// The purpose of init() is to start multi-tasking. It does the bare minimum
// amount of work needed to start the scheduler.
//
// Once multi-tasking is ready, we spawn a new thread that starts in the
// init_stage2() function. Initialization continues there.
extern "C" UNMAP_AFTER_INIT [[noreturn]] void init()
{
if ((FlatPtr)&end_of_kernel_image >= 0xc2000000u) {
// The kernel has grown too large again!
asm volatile("cli;hlt");
}
setup_serial_debug();
// We need to copy the command line before kmalloc is initialized,
// as it may overwrite parts of multiboot!
CommandLine::early_initialize(kernel_cmdline);
memcpy(multiboot_copy_boot_modules_array, (u8*)low_physical_to_virtual(multiboot_info_ptr->mods_addr), multiboot_info_ptr->mods_count * sizeof(multiboot_module_entry_t));
multiboot_copy_boot_modules_count = multiboot_info_ptr->mods_count;
s_bsp_processor.early_initialize(0);
// Invoke the constructors needed for the kernel heap
for (ctor_func_t* ctor = &start_heap_ctors; ctor < &end_heap_ctors; ctor++)
(*ctor)();
kmalloc_init();
slab_alloc_init();
ConsoleDevice::initialize();
s_bsp_processor.initialize(0);
CommandLine::initialize();
MemoryManager::initialize(0);
// Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
VERIFY(&start_of_safemem_text != &end_of_safemem_text);
VERIFY(&start_of_safemem_atomic_text != &end_of_safemem_atomic_text);
// Invoke all static global constructors in the kernel.
// Note that we want to do this as early as possible.
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
(*ctor)();
APIC::initialize();
InterruptManagement::initialize();
ACPI::initialize();
// Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
PCI::initialize();
PCISerialDevice::detect();
VFS::initialize();
dmesgln("Starting SerenityOS...");
TimeManagement::initialize(0);
__stack_chk_guard = get_fast_random<u32>();
NullDevice::initialize();
if (!get_serial_debug())
new SerialDevice(IOAddress(SERIAL_COM1_ADDR), 64);
new SerialDevice(IOAddress(SERIAL_COM2_ADDR), 65);
new SerialDevice(IOAddress(SERIAL_COM3_ADDR), 66);
new SerialDevice(IOAddress(SERIAL_COM4_ADDR), 67);
VMWareBackdoor::the(); // don't wait until first mouse packet
HIDManagement::initialize();
GraphicsManagement::the().initialize();
ConsoleManagement::the().initialize();
Thread::initialize();
Process::initialize();
Scheduler::initialize();
WorkQueue::initialize();
{
RefPtr<Thread> init_stage2_thread;
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2, nullptr);
// We need to make sure we drop the reference for init_stage2_thread
// before calling into Scheduler::start, otherwise we will have a
// dangling Thread that never gets cleaned up
}
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This is where C++ execution begins for APs, after boot.S transfers control here.
//
// The purpose of init_ap() is to initialize APs for multi-tasking.
//
extern "C" UNMAP_AFTER_INIT [[noreturn]] void init_ap(u32 cpu, Processor* processor_info)
{
processor_info->early_initialize(cpu);
processor_info->initialize(cpu);
MemoryManager::initialize(cpu);
Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This method is called once a CPU enters the scheduler and its idle thread
// At this point the initial boot stack can be freed
//
extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
{
if (cpu == 0) {
// TODO: we can reuse the boot stack, maybe for kmalloc()?
} else {
APIC::the().init_finished(cpu);
TimeManagement::initialize(cpu);
}
}
void init_stage2(void*)
{
if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We can't start the APs until we have a scheduler up and running.
// We need to be able to process ICI messages, otherwise another
// core may send too many and end up deadlocking once the pool is
// exhausted
APIC::the().boot_aps();
}
SyncTask::spawn();
FinalizerTask::spawn();
auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
USB::UHCIController::detect();
DMIExpose::initialize();
VirtIO::detect();
E1000NetworkAdapter::detect();
NE2000NetworkAdapter::detect();
RTL8139NetworkAdapter::detect();
LoopbackAdapter::the();
Syscall::initialize();
new MemoryDevice;
new ZeroDevice;
new FullDevice;
new RandomDevice;
PTYMultiplexer::initialize();
SB16::detect();
StorageManagement::initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio());
if (!VFS::the().mount_root(StorageManagement::the().root_filesystem())) {
PANIC("VFS::mount_root failed");
}
Process::current()->set_root_directory(VFS::the().root_custody());
load_kernel_symbol_table();
// NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
MM.protect_readonly_after_init_memory();
// NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
MM.unmap_memory_after_init();
int error;
// FIXME: It would be nicer to set the mode from userspace.
// FIXME: It would be smarter to not hardcode that the first tty is the only graphical one
ConsoleManagement::the().first_tty()->set_graphical(GraphicsManagement::the().framebuffer_devices_exist());
RefPtr<Thread> thread;
auto userspace_init = kernel_command_line().userspace_init();
auto init_args = kernel_command_line().userspace_init_args();
Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, move(init_args), {}, tty0);
if (error != 0) {
PANIC("init_stage2: Error spawning SystemServer: {}", error);
}
thread->set_priority(THREAD_PRIORITY_HIGH);
if (boot_profiling) {
dbgln("Starting full system boot profiling");
auto result = Process::current()->sys$profiling_enable(-1);
VERIFY(!result.is_error());
}
NetworkTask::spawn();
Process::current()->sys$exit(0);
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT void setup_serial_debug()
{
// serial_debug will output all the dbgln() data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
if (StringView(kernel_cmdline).contains("serial_debug")) {
set_serial_debug(true);
}
}
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
// Define some Itanium C++ ABI methods to stop the linker from complaining.
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
}