ladybird/Kernel/Heap/kmalloc.cpp
kleines Filmröllchen a6a439243f Kernel: Turn lock ranks into template parameters
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
  obtain any lock rank just via the template parameter. It was not
  previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
  of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
  readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
  wanted in the first place (or made use of). Locks randomly changing
  their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
  taken in the right order (with the right lock rank checking
  implementation) as rank information is fully statically known.

This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
2023-01-02 18:15:27 -05:00

589 lines
18 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Types.h>
#include <Kernel/Arch/PageDirectory.h>
#include <Kernel/Debug.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#if ARCH(X86_64) || ARCH(AARCH64)
static constexpr size_t CHUNK_SIZE = 64;
#else
# error Unknown architecture
#endif
static_assert(is_power_of_two(CHUNK_SIZE));
static constexpr size_t INITIAL_KMALLOC_MEMORY_SIZE = 2 * MiB;
static constexpr size_t KMALLOC_DEFAULT_ALIGNMENT = 16;
// Treat the heap as logically separate from .bss
__attribute__((section(".heap"))) static u8 initial_kmalloc_memory[INITIAL_KMALLOC_MEMORY_SIZE];
namespace std {
const nothrow_t nothrow;
}
// FIXME: Figure out whether this can be MemoryManager.
static RecursiveSpinlock<LockRank::None> s_lock {}; // needs to be recursive because of dump_backtrace()
struct KmallocSubheap {
KmallocSubheap(u8* base, size_t size)
: allocator(base, size)
{
}
IntrusiveListNode<KmallocSubheap> list_node;
using List = IntrusiveList<&KmallocSubheap::list_node>;
Heap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE> allocator;
};
class KmallocSlabBlock {
public:
static constexpr size_t block_size = 64 * KiB;
static constexpr FlatPtr block_mask = ~(block_size - 1);
KmallocSlabBlock(size_t slab_size)
: m_slab_size(slab_size)
, m_slab_count((block_size - sizeof(KmallocSlabBlock)) / slab_size)
{
for (size_t i = 0; i < m_slab_count; ++i) {
auto* freelist_entry = (FreelistEntry*)(void*)(&m_data[i * slab_size]);
freelist_entry->next = m_freelist;
m_freelist = freelist_entry;
}
}
void* allocate()
{
VERIFY(m_freelist);
++m_allocated_slabs;
return exchange(m_freelist, m_freelist->next);
}
void deallocate(void* ptr)
{
VERIFY(ptr >= &m_data && ptr < ((u8*)this + block_size));
--m_allocated_slabs;
auto* freelist_entry = (FreelistEntry*)ptr;
freelist_entry->next = m_freelist;
m_freelist = freelist_entry;
}
bool is_full() const
{
return m_freelist == nullptr;
}
size_t allocated_bytes() const
{
return m_allocated_slabs * m_slab_size;
}
size_t free_bytes() const
{
return (m_slab_count - m_allocated_slabs) * m_slab_size;
}
IntrusiveListNode<KmallocSlabBlock> list_node;
using List = IntrusiveList<&KmallocSlabBlock::list_node>;
private:
struct FreelistEntry {
FreelistEntry* next;
};
FreelistEntry* m_freelist { nullptr };
size_t m_slab_size { 0 };
size_t m_slab_count { 0 };
size_t m_allocated_slabs { 0 };
[[gnu::aligned(16)]] u8 m_data[];
};
class KmallocSlabheap {
public:
KmallocSlabheap(size_t slab_size)
: m_slab_size(slab_size)
{
}
size_t slab_size() const { return m_slab_size; }
void* allocate(CallerWillInitializeMemory caller_will_initialize_memory)
{
if (m_usable_blocks.is_empty()) {
// FIXME: This allocation wastes `block_size` bytes due to the implementation of kmalloc_aligned().
// Handle this with a custom VM+page allocator instead of using kmalloc_aligned().
auto* slot = kmalloc_aligned(KmallocSlabBlock::block_size, KmallocSlabBlock::block_size);
if (!slot) {
dbgln_if(KMALLOC_DEBUG, "OOM while growing slabheap ({})", m_slab_size);
return nullptr;
}
auto* block = new (slot) KmallocSlabBlock(m_slab_size);
m_usable_blocks.append(*block);
}
auto* block = m_usable_blocks.first();
auto* ptr = block->allocate();
if (block->is_full())
m_full_blocks.append(*block);
if (caller_will_initialize_memory == CallerWillInitializeMemory::No) {
memset(ptr, KMALLOC_SCRUB_BYTE, m_slab_size);
}
return ptr;
}
void deallocate(void* ptr)
{
memset(ptr, KFREE_SCRUB_BYTE, m_slab_size);
auto* block = (KmallocSlabBlock*)((FlatPtr)ptr & KmallocSlabBlock::block_mask);
bool block_was_full = block->is_full();
block->deallocate(ptr);
if (block_was_full)
m_usable_blocks.append(*block);
}
size_t allocated_bytes() const
{
size_t total = m_full_blocks.size_slow() * KmallocSlabBlock::block_size;
for (auto const& slab_block : m_usable_blocks)
total += slab_block.allocated_bytes();
return total;
}
size_t free_bytes() const
{
size_t total = 0;
for (auto const& slab_block : m_usable_blocks)
total += slab_block.free_bytes();
return total;
}
bool try_purge()
{
bool did_purge = false;
// Note: We cannot remove children from the list when using a structured loop,
// Because we need to advance the iterator before we delete the underlying
// value, so we have to iterate manually
auto block = m_usable_blocks.begin();
while (block != m_usable_blocks.end()) {
if (block->allocated_bytes() != 0) {
++block;
continue;
}
auto& block_to_remove = *block;
++block;
block_to_remove.list_node.remove();
block_to_remove.~KmallocSlabBlock();
kfree_sized(&block_to_remove, KmallocSlabBlock::block_size);
did_purge = true;
}
return did_purge;
}
private:
size_t m_slab_size { 0 };
KmallocSlabBlock::List m_usable_blocks;
KmallocSlabBlock::List m_full_blocks;
};
struct KmallocGlobalData {
static constexpr size_t minimum_subheap_size = 1 * MiB;
KmallocGlobalData(u8* initial_heap, size_t initial_heap_size)
{
add_subheap(initial_heap, initial_heap_size);
}
void add_subheap(u8* storage, size_t storage_size)
{
dbgln_if(KMALLOC_DEBUG, "Adding kmalloc subheap @ {} with size {}", storage, storage_size);
static_assert(sizeof(KmallocSubheap) <= PAGE_SIZE);
auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE);
subheaps.append(*subheap);
}
void* allocate(size_t size, size_t alignment, CallerWillInitializeMemory caller_will_initialize_memory)
{
VERIFY(!expansion_in_progress);
for (auto& slabheap : slabheaps) {
if (size <= slabheap.slab_size() && alignment <= slabheap.slab_size())
return slabheap.allocate(caller_will_initialize_memory);
}
for (auto& subheap : subheaps) {
if (auto* ptr = subheap.allocator.allocate(size, alignment, caller_will_initialize_memory))
return ptr;
}
// NOTE: This size calculation is a mirror of kmalloc_aligned(KmallocSlabBlock)
if (size <= KmallocSlabBlock::block_size * 2 + sizeof(ptrdiff_t) + sizeof(size_t)) {
// FIXME: We should propagate a freed pointer, to find the specific subheap it belonged to
// This would save us iterating over them in the next step and remove a recursion
bool did_purge = false;
for (auto& slabheap : slabheaps) {
if (slabheap.try_purge()) {
dbgln_if(KMALLOC_DEBUG, "Kmalloc purged block(s) from slabheap of size {} to avoid expansion", slabheap.slab_size());
did_purge = true;
break;
}
}
if (did_purge)
return allocate(size, alignment, caller_will_initialize_memory);
}
if (!try_expand(size)) {
dbgln_if(KMALLOC_DEBUG, "OOM when trying to expand kmalloc heap");
return nullptr;
}
return allocate(size, alignment, caller_will_initialize_memory);
}
void deallocate(void* ptr, size_t size)
{
VERIFY(!expansion_in_progress);
VERIFY(is_valid_kmalloc_address(VirtualAddress { ptr }));
for (auto& slabheap : slabheaps) {
if (size <= slabheap.slab_size())
return slabheap.deallocate(ptr);
}
for (auto& subheap : subheaps) {
if (subheap.allocator.contains(ptr)) {
subheap.allocator.deallocate(ptr);
return;
}
}
PANIC("Bogus pointer passed to kfree_sized({:p}, {})", ptr, size);
}
size_t allocated_bytes() const
{
size_t total = 0;
for (auto const& subheap : subheaps)
total += subheap.allocator.allocated_bytes();
for (auto const& slabheap : slabheaps)
total += slabheap.allocated_bytes();
return total;
}
size_t free_bytes() const
{
size_t total = 0;
for (auto const& subheap : subheaps)
total += subheap.allocator.free_bytes();
for (auto const& slabheap : slabheaps)
total += slabheap.free_bytes();
return total;
}
bool try_expand(size_t allocation_request)
{
VERIFY(!expansion_in_progress);
TemporaryChange change(expansion_in_progress, true);
auto new_subheap_base = expansion_data->next_virtual_address;
Checked<size_t> padded_allocation_request = allocation_request;
padded_allocation_request *= 2;
padded_allocation_request += PAGE_SIZE;
if (padded_allocation_request.has_overflow()) {
PANIC("Integer overflow during kmalloc heap expansion");
}
auto rounded_allocation_request = Memory::page_round_up(padded_allocation_request.value());
if (rounded_allocation_request.is_error()) {
PANIC("Integer overflow computing pages for kmalloc heap expansion");
}
size_t new_subheap_size = max(minimum_subheap_size, rounded_allocation_request.value());
dbgln_if(KMALLOC_DEBUG, "Unable to allocate {}, expanding kmalloc heap", allocation_request);
if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) {
dbgln_if(KMALLOC_DEBUG, "Out of address space when expanding kmalloc heap");
return false;
}
auto physical_pages_or_error = MM.commit_physical_pages(new_subheap_size / PAGE_SIZE);
if (physical_pages_or_error.is_error()) {
dbgln_if(KMALLOC_DEBUG, "Out of address space when expanding kmalloc heap");
return false;
}
auto physical_pages = physical_pages_or_error.release_value();
expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size);
auto cpu_supports_nx = Processor::current().has_nx();
SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) {
// FIXME: We currently leak physical memory when mapping it into the kmalloc heap.
auto& page = physical_pages.take_one().leak_ref();
auto* pte = MM.pte(MM.kernel_page_directory(), vaddr);
VERIFY(pte);
pte->set_physical_page_base(page.paddr().get());
pte->set_global(true);
pte->set_user_allowed(false);
pte->set_writable(true);
if (cpu_supports_nx)
pte->set_execute_disabled(true);
pte->set_present(true);
}
add_subheap(new_subheap_base.as_ptr(), new_subheap_size);
return true;
}
void enable_expansion()
{
// FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit.
auto reserved_region = MUST(MM.allocate_unbacked_region_anywhere(64 * MiB, 1 * MiB));
expansion_data = KmallocGlobalData::ExpansionData {
.virtual_range = reserved_region->range(),
.next_virtual_address = reserved_region->range().base(),
};
// Make sure the entire kmalloc VM range is backed by page tables.
// This avoids having to deal with lazy page table allocation during heap expansion.
SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
for (auto vaddr = reserved_region->range().base(); vaddr < reserved_region->range().end(); vaddr = vaddr.offset(PAGE_SIZE)) {
MM.ensure_pte(MM.kernel_page_directory(), vaddr);
}
(void)reserved_region.leak_ptr();
}
struct ExpansionData {
Memory::VirtualRange virtual_range;
VirtualAddress next_virtual_address;
};
Optional<ExpansionData> expansion_data;
bool is_valid_kmalloc_address(VirtualAddress vaddr) const
{
if (vaddr.as_ptr() >= initial_kmalloc_memory && vaddr.as_ptr() < (initial_kmalloc_memory + INITIAL_KMALLOC_MEMORY_SIZE))
return true;
if (!expansion_data.has_value())
return false;
return expansion_data->virtual_range.contains(vaddr);
}
KmallocSubheap::List subheaps;
KmallocSlabheap slabheaps[6] = { 16, 32, 64, 128, 256, 512 };
bool expansion_in_progress { false };
};
READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global;
alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)];
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
static size_t g_nested_kfree_calls;
bool g_dump_kmalloc_stacks;
void kmalloc_enable_expand()
{
g_kmalloc_global->enable_expansion();
}
UNMAP_AFTER_INIT void kmalloc_init()
{
// Zero out heap since it's placed after end_of_kernel_bss.
memset(initial_kmalloc_memory, 0, sizeof(initial_kmalloc_memory));
g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(initial_kmalloc_memory, sizeof(initial_kmalloc_memory));
s_lock.initialize();
}
static void* kmalloc_impl(size_t size, size_t alignment, CallerWillInitializeMemory caller_will_initialize_memory)
{
// Catch bad callers allocating under spinlock.
if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
Processor::verify_no_spinlocks_held();
}
// Alignment must be a power of two.
VERIFY(is_power_of_two(alignment));
SpinlockLocker lock(s_lock);
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
dbgln("kmalloc({})", size);
Kernel::dump_backtrace();
}
void* ptr = g_kmalloc_global->allocate(size, alignment, caller_will_initialize_memory);
Thread* current_thread = Thread::current();
if (!current_thread)
current_thread = Processor::idle_thread();
if (current_thread) {
// FIXME: By the time we check this, we have already allocated above.
// This means that in the case of an infinite recursion, we can't catch it this way.
VERIFY(current_thread->is_allocation_enabled());
PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
}
return ptr;
}
void* kmalloc(size_t size)
{
return kmalloc_impl(size, KMALLOC_DEFAULT_ALIGNMENT, CallerWillInitializeMemory::No);
}
void* kcalloc(size_t count, size_t size)
{
if (Checked<size_t>::multiplication_would_overflow(count, size))
return nullptr;
size_t new_size = count * size;
auto* ptr = kmalloc_impl(new_size, KMALLOC_DEFAULT_ALIGNMENT, CallerWillInitializeMemory::Yes);
if (ptr)
memset(ptr, 0, new_size);
return ptr;
}
void kfree_sized(void* ptr, size_t size)
{
if (!ptr)
return;
VERIFY(size > 0);
// Catch bad callers allocating under spinlock.
if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
Processor::verify_no_spinlocks_held();
}
SpinlockLocker lock(s_lock);
++g_kfree_call_count;
++g_nested_kfree_calls;
if (g_nested_kfree_calls == 1) {
Thread* current_thread = Thread::current();
if (!current_thread)
current_thread = Processor::idle_thread();
if (current_thread) {
VERIFY(current_thread->is_allocation_enabled());
PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
}
}
g_kmalloc_global->deallocate(ptr, size);
--g_nested_kfree_calls;
}
size_t kmalloc_good_size(size_t size)
{
VERIFY(size > 0);
// NOTE: There's no need to take the kmalloc lock, as the kmalloc slab-heaps (and their sizes) are constant
for (auto const& slabheap : g_kmalloc_global->slabheaps) {
if (size <= slabheap.slab_size())
return slabheap.slab_size();
}
return round_up_to_power_of_two(size + Heap<CHUNK_SIZE>::AllocationHeaderSize, CHUNK_SIZE) - Heap<CHUNK_SIZE>::AllocationHeaderSize;
}
void* kmalloc_aligned(size_t size, size_t alignment)
{
return kmalloc_impl(size, alignment, CallerWillInitializeMemory::No);
}
void* operator new(size_t size)
{
void* ptr = kmalloc(size);
VERIFY(ptr);
return ptr;
}
void* operator new(size_t size, std::nothrow_t const&) noexcept
{
return kmalloc(size);
}
void* operator new(size_t size, std::align_val_t al)
{
void* ptr = kmalloc_aligned(size, (size_t)al);
VERIFY(ptr);
return ptr;
}
void* operator new(size_t size, std::align_val_t al, std::nothrow_t const&) noexcept
{
return kmalloc_aligned(size, (size_t)al);
}
void* operator new[](size_t size)
{
void* ptr = kmalloc(size);
VERIFY(ptr);
return ptr;
}
void* operator new[](size_t size, std::nothrow_t const&) noexcept
{
return kmalloc(size);
}
void operator delete(void*) noexcept
{
// All deletes in kernel code should have a known size.
VERIFY_NOT_REACHED();
}
void operator delete(void* ptr, size_t size) noexcept
{
return kfree_sized(ptr, size);
}
void operator delete(void* ptr, size_t size, std::align_val_t) noexcept
{
return kfree_sized(ptr, size);
}
void operator delete[](void*) noexcept
{
// All deletes in kernel code should have a known size.
VERIFY_NOT_REACHED();
}
void operator delete[](void* ptr, size_t size) noexcept
{
return kfree_sized(ptr, size);
}
void get_kmalloc_stats(kmalloc_stats& stats)
{
SpinlockLocker lock(s_lock);
stats.bytes_allocated = g_kmalloc_global->allocated_bytes();
stats.bytes_free = g_kmalloc_global->free_bytes();
stats.kmalloc_call_count = g_kmalloc_call_count;
stats.kfree_call_count = g_kfree_call_count;
}