ladybird/Libraries/LibJS/AST.cpp

1155 lines
32 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Value.h>
#include <stdio.h>
namespace JS {
Value ScopeNode::execute(Interpreter& interpreter) const
{
return interpreter.run(*this);
}
Value FunctionDeclaration::execute(Interpreter& interpreter) const
{
auto* function = interpreter.heap().allocate<ScriptFunction>(body(), parameters());
interpreter.set_variable(name(), function);
return js_undefined();
}
Value FunctionExpression::execute(Interpreter& interpreter) const
{
return interpreter.heap().allocate<ScriptFunction>(body(), parameters());
}
Value ExpressionStatement::execute(Interpreter& interpreter) const
{
return m_expression->execute(interpreter);
}
CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter) const
{
if (is_new_expression()) {
// Computing |this| is irrelevant for "new" expression.
return { js_undefined(), m_callee->execute(interpreter) };
}
if (m_callee->is_member_expression()) {
auto& member_expression = static_cast<const MemberExpression&>(*m_callee);
auto object_value = member_expression.object().execute(interpreter);
if (interpreter.exception())
return {};
auto* this_value = object_value.to_object(interpreter.heap());
if (interpreter.exception())
return {};
auto callee = this_value->get(member_expression.computed_property_name(interpreter)).value_or(js_undefined());
return { this_value, callee };
}
return { &interpreter.global_object(), m_callee->execute(interpreter) };
}
Value CallExpression::execute(Interpreter& interpreter) const
{
auto [this_value, callee] = compute_this_and_callee(interpreter);
if (interpreter.exception())
return {};
ASSERT(!callee.is_empty());
if (is_new_expression()) {
if (!callee.is_object()
|| !callee.as_object().is_function()
|| (callee.as_object().is_native_function()
&& !static_cast<NativeFunction&>(callee.as_object()).has_constructor()))
return interpreter.throw_exception<Error>("TypeError", String::format("%s is not a constructor", callee.to_string().characters()));
}
if (!callee.is_object() || !callee.as_object().is_function())
return interpreter.throw_exception<Error>("TypeError", String::format("%s is not a function", callee.to_string().characters()));
auto& function = static_cast<Function&>(callee.as_object());
Vector<Value> arguments;
arguments.ensure_capacity(m_arguments.size());
for (size_t i = 0; i < m_arguments.size(); ++i) {
auto value = m_arguments[i].execute(interpreter);
if (interpreter.exception())
return {};
arguments.append(value);
if (interpreter.exception())
return {};
}
auto& call_frame = interpreter.push_call_frame();
call_frame.arguments = move(arguments);
Object* new_object = nullptr;
Value result;
if (is_new_expression()) {
new_object = interpreter.heap().allocate<Object>();
auto prototype = function.get("prototype");
if (prototype.has_value() && prototype.value().is_object())
new_object->set_prototype(&prototype.value().as_object());
call_frame.this_value = new_object;
result = function.construct(interpreter);
} else {
call_frame.this_value = this_value;
result = function.call(interpreter);
}
if (interpreter.exception())
return {};
interpreter.pop_call_frame();
if (is_new_expression()) {
if (result.is_object())
return result;
return new_object;
}
return result;
}
Value ReturnStatement::execute(Interpreter& interpreter) const
{
auto value = argument() ? argument()->execute(interpreter) : js_undefined();
if (interpreter.exception())
return {};
interpreter.unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter) const
{
auto predicate_result = m_predicate->execute(interpreter);
if (interpreter.exception())
return {};
if (predicate_result.to_boolean())
return interpreter.run(*m_consequent);
if (m_alternate)
return interpreter.run(*m_alternate);
return js_undefined();
}
Value WhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
while (m_test->execute(interpreter).to_boolean()) {
if (interpreter.exception())
return {};
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DoWhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
do {
if (interpreter.exception())
return {};
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
} while (m_test->execute(interpreter).to_boolean());
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter) const
{
RefPtr<BlockStatement> wrapper;
if (m_init && m_init->is_variable_declaration() && static_cast<const VariableDeclaration*>(m_init.ptr())->declaration_type() != DeclarationType::Var) {
wrapper = create_ast_node<BlockStatement>();
interpreter.enter_scope(*wrapper, {}, ScopeType::Block);
}
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
Value last_value = js_undefined();
if (m_init) {
m_init->execute(interpreter);
if (interpreter.exception())
return {};
}
if (m_test) {
while (m_test->execute(interpreter).to_boolean()) {
if (interpreter.exception())
return {};
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter);
if (interpreter.exception())
return {};
}
}
} else {
while (true) {
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter);
if (interpreter.exception())
return {};
}
}
}
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case BinaryOp::Addition:
return add(lhs_result, rhs_result);
case BinaryOp::Subtraction:
return sub(lhs_result, rhs_result);
case BinaryOp::Multiplication:
return mul(lhs_result, rhs_result);
case BinaryOp::Division:
return div(lhs_result, rhs_result);
case BinaryOp::Modulo:
return mod(lhs_result, rhs_result);
case BinaryOp::Exponentiation:
return exp(lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return typed_eq(lhs_result, rhs_result);
case BinaryOp::TypedInequals:
return Value(!typed_eq(lhs_result, rhs_result).as_bool());
case BinaryOp::AbstractEquals:
return eq(lhs_result, rhs_result);
case BinaryOp::AbstractInequals:
return Value(!eq(lhs_result, rhs_result).as_bool());
case BinaryOp::GreaterThan:
return greater_than(lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(lhs_result, rhs_result);
case BinaryOp::InstanceOf:
return instance_of(lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case LogicalOp::And:
if (lhs_result.to_boolean()) {
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return Value(rhs_result);
}
return Value(lhs_result);
case LogicalOp::Or:
if (lhs_result.to_boolean())
return Value(lhs_result);
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return Value(rhs_result);
}
ASSERT_NOT_REACHED();
}
Value UnaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case UnaryOp::BitwiseNot:
return bitwise_not(lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
case UnaryOp::Plus:
return unary_plus(lhs_result);
case UnaryOp::Minus:
return unary_minus(lhs_result);
case UnaryOp::Typeof:
switch (lhs_result.type()) {
case Value::Type::Empty:
ASSERT_NOT_REACHED();
return {};
case Value::Type::Undefined:
return js_string(interpreter, "undefined");
case Value::Type::Null:
// yes, this is on purpose. yes, this is how javascript works.
// yes, it's silly.
return js_string(interpreter, "object");
case Value::Type::Number:
return js_string(interpreter, "number");
case Value::Type::String:
return js_string(interpreter, "string");
case Value::Type::Object:
if (lhs_result.as_object().is_function())
return js_string(interpreter, "function");
return js_string(interpreter, "object");
case Value::Type::Boolean:
return js_string(interpreter, "boolean");
}
}
ASSERT_NOT_REACHED();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& child : children())
child.dump(indent + 1);
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::AbstractEquals:
op_string = "==";
break;
case BinaryOp::AbstractInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
printf("CallExpression %s\n", is_new_expression() ? "[new]" : "");
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumericLiteral %g\n", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
printf("null\n");
}
void FunctionNode::dump(int indent, const char* class_name) const
{
StringBuilder parameters_builder;
parameters_builder.join(',', parameters());
print_indent(indent);
printf("%s '%s(%s)'\n", class_name, name().characters(), parameters_builder.build().characters());
body().dump(indent + 1);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
printf("Else\n");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("DoWhile\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter) const
{
auto variable = interpreter.get_variable(string());
if (!variable.has_value())
return interpreter.throw_exception<Error>("ReferenceError", String::format("'%s' not known", string().characters()));
return variable.value();
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
Value AssignmentExpression::execute(Interpreter& interpreter) const
{
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
Value lhs_result;
switch (m_op) {
case AssignmentOp::Assignment:
break;
case AssignmentOp::AdditionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = add(lhs_result, rhs_result);
break;
case AssignmentOp::SubtractionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = sub(lhs_result, rhs_result);
break;
case AssignmentOp::MultiplicationAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = mul(lhs_result, rhs_result);
break;
case AssignmentOp::DivisionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = div(lhs_result, rhs_result);
break;
}
if (interpreter.exception())
return {};
if (m_lhs->is_identifier()) {
auto name = static_cast<const Identifier&>(*m_lhs).string();
interpreter.set_variable(name, rhs_result);
} else if (m_lhs->is_member_expression()) {
auto object_value = static_cast<const MemberExpression&>(*m_lhs).object().execute(interpreter);
if (interpreter.exception())
return {};
if (auto* object = object_value.to_object(interpreter.heap())) {
auto property_name = static_cast<const MemberExpression&>(*m_lhs).computed_property_name(interpreter);
object->put(property_name, rhs_result);
}
} else {
ASSERT_NOT_REACHED();
}
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter) const
{
ASSERT(m_argument->is_identifier());
auto name = static_cast<const Identifier&>(*m_argument).string();
auto previous_variable = interpreter.get_variable(name);
ASSERT(previous_variable.has_value());
auto previous_value = previous_variable.value();
ASSERT(previous_value.is_number());
int op_result = 0;
switch (m_op) {
case UpdateOp::Increment:
op_result = 1;
break;
case UpdateOp::Decrement:
op_result = -1;
break;
}
interpreter.set_variable(name, Value(previous_value.as_double() + op_result));
if (m_prefixed)
return JS::Value(previous_value.as_double() + op_result);
return previous_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_prefixed)
printf("%s\n", op_string);
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
printf("%s\n", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter) const
{
for (auto& declarator : m_declarations) {
interpreter.declare_variable(declarator.id().string(), m_declaration_type);
if (auto* init = declarator.init()) {
auto initalizer_result = init->execute(interpreter);
if (interpreter.exception())
return {};
interpreter.set_variable(declarator.id().string(), initalizer_result, true);
}
}
return js_undefined();
}
Value VariableDeclarator::execute(Interpreter&) const
{
// NOTE: This node is handled by VariableDeclaration.
ASSERT_NOT_REACHED();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_type_string = nullptr;
switch (m_declaration_type) {
case DeclarationType::Let:
declaration_type_string = "Let";
break;
case DeclarationType::Var:
declaration_type_string = "Var";
break;
case DeclarationType::Const:
declaration_type_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_type_string);
for (auto& declarator : m_declarations)
declarator.dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_id->dump(indent + 1);
if (m_init)
m_init->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto it : m_properties) {
print_indent(indent + 1);
printf("%s: ", it.key.characters());
it.value->dump(0);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectExpression::execute(Interpreter& interpreter) const
{
auto object = interpreter.heap().allocate<Object>();
for (auto it : m_properties) {
auto value = it.value->execute(interpreter);
if (interpreter.exception())
return {};
object->put(it.key, value);
}
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false");
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
PropertyName MemberExpression::computed_property_name(Interpreter& interpreter) const
{
if (!is_computed()) {
ASSERT(m_property->is_identifier());
return PropertyName(static_cast<const Identifier&>(*m_property).string());
}
auto index = m_property->execute(interpreter);
if (interpreter.exception())
return {};
ASSERT(!index.is_empty());
// FIXME: What about non-integer numbers tho.
if (index.is_number() && index.to_i32() >= 0)
return PropertyName(index.to_i32());
return PropertyName(index.to_string());
}
Value MemberExpression::execute(Interpreter& interpreter) const
{
auto object_value = m_object->execute(interpreter);
if (interpreter.exception())
return {};
auto* object_result = object_value.to_object(interpreter.heap());
if (interpreter.exception())
return {};
auto result = object_result->get(computed_property_name(interpreter));
if (result.has_value()) {
ASSERT(!result.value().is_empty());
}
return result.value_or(js_undefined());
}
Value StringLiteral::execute(Interpreter& interpreter) const
{
return js_string(interpreter, m_value);
}
Value NumericLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value BooleanLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value NullLiteral::execute(Interpreter&) const
{
return js_null();
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
element.dump(indent + 1);
}
}
Value ArrayExpression::execute(Interpreter& interpreter) const
{
auto* array = interpreter.heap().allocate<Array>();
for (auto& element : m_elements) {
auto value = element.execute(interpreter);
if (interpreter.exception())
return {};
array->push(value);
}
return array;
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Block)\n");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
printf("(Handler)\n");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
printf("(Finalizer)\n");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
printf("CatchClause");
if (!m_parameter.is_null())
printf(" (%s)", m_parameter.characters());
printf("\n");
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
Value TryStatement::execute(Interpreter& interpreter) const
{
interpreter.run(block(), {}, ScopeType::Try);
if (auto* exception = interpreter.exception()) {
if (m_handler) {
interpreter.clear_exception();
ArgumentVector arguments { { m_handler->parameter(), exception->value() } };
interpreter.run(m_handler->body(), move(arguments));
}
}
if (m_finalizer)
m_finalizer->execute(interpreter);
return js_undefined();
}
Value CatchClause::execute(Interpreter&) const
{
// NOTE: CatchClause execution is handled by TryStatement.
ASSERT_NOT_REACHED();
return {};
}
Value ThrowStatement::execute(Interpreter& interpreter) const
{
auto value = m_argument->execute(interpreter);
if (interpreter.exception())
return {};
return interpreter.throw_exception(value);
}
Value SwitchStatement::execute(Interpreter& interpreter) const
{
auto discriminant_result = m_discriminant->execute(interpreter);
if (interpreter.exception())
return {};
bool falling_through = false;
for (auto& switch_case : m_cases) {
if (!falling_through && switch_case.test()) {
auto test_result = switch_case.test()->execute(interpreter);
if (interpreter.exception())
return {};
if (!eq(discriminant_result, test_result).to_boolean())
continue;
}
falling_through = true;
for (auto& statement : switch_case.consequent()) {
statement.execute(interpreter);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
return {};
}
return {};
}
}
}
return js_undefined();
}
Value SwitchCase::execute(Interpreter& interpreter) const
{
(void)interpreter;
return {};
}
Value BreakStatement::execute(Interpreter& interpreter) const
{
interpreter.unwind(ScopeType::Breakable);
return js_undefined();
}
Value ContinueStatement::execute(Interpreter& interpreter) const
{
interpreter.unwind(ScopeType::Continuable);
return js_undefined();
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case.dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
if (m_test) {
printf("(Test)\n");
m_test->dump(indent + 1);
} else {
printf("(Default)\n");
}
print_indent(indent);
printf("(Consequent)\n");
int i = 0;
for (auto& statement : m_consequent) {
print_indent(indent);
printf("[%d]\n", i++);
statement.dump(indent + 1);
}
}
Value ConditionalExpression::execute(Interpreter& interpreter) const
{
auto test_result = m_test->execute(interpreter);
if (interpreter.exception())
return {};
Value result;
if (test_result.to_boolean()) {
result = m_consequent->execute(interpreter);
} else {
result = m_alternate->execute(interpreter);
}
if (interpreter.exception())
return {};
return result;
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Test)\n");
m_test->dump(indent + 1);
print_indent(indent);
printf("(Consequent)\n");
m_test->dump(indent + 1);
print_indent(indent);
printf("(Alternate)\n");
m_test->dump(indent + 1);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value SequenceExpression::execute(Interpreter& interpreter) const
{
Value last_value;
for (auto& expression : m_expressions) {
last_value = expression.execute(interpreter);
if (interpreter.exception())
return {};
}
return last_value;
}
}