ladybird/Userland/Libraries/LibGfx/Bitmap.h
Timothy Slater eec881ea34 LibGfx: Implement flood fill algorithm in Bitmap class
This change implements a flood fill algorithm for the Bitmap class. This
will be leveraged by various Tools in PixelPaint. Moving the code into
Bitmap reduces the duplication of the algorithm throughout the
PixelPaint Tools (currently Bucket Tool and Wand Select).

The flood fill function requires you to pass in a threshold value (0 -
100) as well as a lambda for what to do when a pixel gets reached. The
lambda is provided an IntPoint representing the coordinates of the pixel
that was just reached.

The genericized lambda approach allows for a variety of things to be
done as the flood algorithm progresses. For example, the Bucket Tool
will paint each pixel that gets reached with the fill_color. The Wand
Select tool wont actually alter the bitmap itself, instead it uses the
reached pixels to alter a selection mask.
2022-10-14 13:39:33 +02:00

366 lines
12 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Timothy Slater <tslater2006@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Forward.h>
#include <AK/Function.h>
#include <AK/RefCounted.h>
#include <LibCore/AnonymousBuffer.h>
#include <LibGfx/Color.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Rect.h>
#define ENUMERATE_IMAGE_FORMATS \
__ENUMERATE_IMAGE_FORMAT(pbm, ".pbm") \
__ENUMERATE_IMAGE_FORMAT(pgm, ".pgm") \
__ENUMERATE_IMAGE_FORMAT(png, ".png") \
__ENUMERATE_IMAGE_FORMAT(ppm, ".ppm") \
__ENUMERATE_IMAGE_FORMAT(gif, ".gif") \
__ENUMERATE_IMAGE_FORMAT(bmp, ".bmp") \
__ENUMERATE_IMAGE_FORMAT(ico, ".ico") \
__ENUMERATE_IMAGE_FORMAT(jpg, ".jpg") \
__ENUMERATE_IMAGE_FORMAT(jpg, ".jpeg") \
__ENUMERATE_IMAGE_FORMAT(dds, ".dds") \
__ENUMERATE_IMAGE_FORMAT(qoi, ".qoi")
namespace Gfx {
enum class BitmapFormat {
Invalid,
Indexed1,
Indexed2,
Indexed4,
Indexed8,
BGRx8888,
BGRA8888,
RGBA8888,
};
inline bool is_valid_bitmap_format(unsigned format)
{
switch (format) {
case (unsigned)BitmapFormat::Invalid:
case (unsigned)BitmapFormat::Indexed1:
case (unsigned)BitmapFormat::Indexed2:
case (unsigned)BitmapFormat::Indexed4:
case (unsigned)BitmapFormat::Indexed8:
case (unsigned)BitmapFormat::BGRx8888:
case (unsigned)BitmapFormat::BGRA8888:
case (unsigned)BitmapFormat::RGBA8888:
return true;
}
return false;
}
enum class StorageFormat {
Indexed8,
BGRx8888,
BGRA8888,
RGBA8888,
};
static StorageFormat determine_storage_format(BitmapFormat format)
{
switch (format) {
case BitmapFormat::BGRx8888:
return StorageFormat::BGRx8888;
case BitmapFormat::BGRA8888:
return StorageFormat::BGRA8888;
case BitmapFormat::RGBA8888:
return StorageFormat::RGBA8888;
case BitmapFormat::Indexed1:
case BitmapFormat::Indexed2:
case BitmapFormat::Indexed4:
case BitmapFormat::Indexed8:
return StorageFormat::Indexed8;
default:
VERIFY_NOT_REACHED();
}
}
struct BackingStore;
enum RotationDirection {
CounterClockwise,
Clockwise
};
class Bitmap : public RefCounted<Bitmap> {
public:
[[nodiscard]] static ErrorOr<NonnullRefPtr<Bitmap>> try_create(BitmapFormat, IntSize const&, int intrinsic_scale = 1);
[[nodiscard]] static ErrorOr<NonnullRefPtr<Bitmap>> try_create_shareable(BitmapFormat, IntSize const&, int intrinsic_scale = 1);
[[nodiscard]] static ErrorOr<NonnullRefPtr<Bitmap>> try_create_wrapper(BitmapFormat, IntSize const&, int intrinsic_scale, size_t pitch, void*);
[[nodiscard]] static ErrorOr<NonnullRefPtr<Bitmap>> try_load_from_file(StringView path, int scale_factor = 1);
[[nodiscard]] static ErrorOr<NonnullRefPtr<Bitmap>> try_load_from_fd_and_close(int fd, StringView path);
[[nodiscard]] static ErrorOr<NonnullRefPtr<Bitmap>> try_create_with_anonymous_buffer(BitmapFormat, Core::AnonymousBuffer, IntSize const&, int intrinsic_scale, Vector<ARGB32> const& palette);
static ErrorOr<NonnullRefPtr<Bitmap>> try_create_from_serialized_byte_buffer(ByteBuffer&&);
static bool is_path_a_supported_image_format(StringView path)
{
#define __ENUMERATE_IMAGE_FORMAT(Name, Ext) \
if (path.ends_with(Ext##sv, CaseSensitivity::CaseInsensitive)) \
return true;
ENUMERATE_IMAGE_FORMATS
#undef __ENUMERATE_IMAGE_FORMAT
return false;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> clone() const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> rotated(Gfx::RotationDirection) const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> flipped(Gfx::Orientation) const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> scaled(int sx, int sy) const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> scaled(float sx, float sy) const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> cropped(Gfx::IntRect, Optional<BitmapFormat> new_bitmap_format = {}) const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> to_bitmap_backed_by_anonymous_buffer() const;
[[nodiscard]] ByteBuffer serialize_to_byte_buffer() const;
[[nodiscard]] ShareableBitmap to_shareable_bitmap() const;
void invert();
~Bitmap();
[[nodiscard]] u8* scanline_u8(int physical_y);
[[nodiscard]] u8 const* scanline_u8(int physical_y) const;
[[nodiscard]] ARGB32* scanline(int physical_y);
[[nodiscard]] ARGB32 const* scanline(int physical_y) const;
[[nodiscard]] IntRect rect() const { return { {}, m_size }; }
[[nodiscard]] IntSize size() const { return m_size; }
[[nodiscard]] int width() const { return m_size.width(); }
[[nodiscard]] int height() const { return m_size.height(); }
[[nodiscard]] int scale() const { return m_scale; }
[[nodiscard]] IntRect physical_rect() const { return rect() * scale(); }
[[nodiscard]] IntSize physical_size() const { return size() * scale(); }
[[nodiscard]] int physical_width() const { return physical_size().width(); }
[[nodiscard]] int physical_height() const { return physical_size().height(); }
[[nodiscard]] size_t pitch() const { return m_pitch; }
[[nodiscard]] ALWAYS_INLINE bool is_indexed() const
{
return is_indexed(m_format);
}
[[nodiscard]] ALWAYS_INLINE static bool is_indexed(BitmapFormat format)
{
return format == BitmapFormat::Indexed8 || format == BitmapFormat::Indexed4
|| format == BitmapFormat::Indexed2 || format == BitmapFormat::Indexed1;
}
[[nodiscard]] static size_t palette_size(BitmapFormat format)
{
switch (format) {
case BitmapFormat::Indexed1:
return 2;
case BitmapFormat::Indexed2:
return 4;
case BitmapFormat::Indexed4:
return 16;
case BitmapFormat::Indexed8:
return 256;
default:
return 0;
}
}
[[nodiscard]] Vector<ARGB32> palette_to_vector() const;
[[nodiscard]] static unsigned bpp_for_format(BitmapFormat format)
{
switch (format) {
case BitmapFormat::Indexed1:
return 1;
case BitmapFormat::Indexed2:
return 2;
case BitmapFormat::Indexed4:
return 4;
case BitmapFormat::Indexed8:
return 8;
case BitmapFormat::BGRx8888:
case BitmapFormat::BGRA8888:
return 32;
default:
VERIFY_NOT_REACHED();
case BitmapFormat::Invalid:
return 0;
}
}
[[nodiscard]] static size_t minimum_pitch(size_t physical_width, BitmapFormat);
[[nodiscard]] unsigned bpp() const
{
return bpp_for_format(m_format);
}
void fill(Color);
[[nodiscard]] bool has_alpha_channel() const { return m_format == BitmapFormat::BGRA8888 || m_format == BitmapFormat::RGBA8888; }
[[nodiscard]] BitmapFormat format() const { return m_format; }
void set_mmap_name(String const&);
[[nodiscard]] static constexpr size_t size_in_bytes(size_t pitch, int physical_height) { return pitch * physical_height; }
[[nodiscard]] size_t size_in_bytes() const { return size_in_bytes(m_pitch, physical_height()); }
[[nodiscard]] Color palette_color(u8 index) const { return Color::from_argb(m_palette[index]); }
void set_palette_color(u8 index, Color color) { m_palette[index] = color.value(); }
template<StorageFormat>
[[nodiscard]] Color get_pixel(int physical_x, int physical_y) const;
[[nodiscard]] Color get_pixel(int physical_x, int physical_y) const;
[[nodiscard]] Color get_pixel(IntPoint const& physical_position) const
{
return get_pixel(physical_position.x(), physical_position.y());
}
template<StorageFormat>
void set_pixel(int physical_x, int physical_y, Color);
void set_pixel(int physical_x, int physical_y, Color);
void set_pixel(IntPoint const& physical_position, Color color)
{
set_pixel(physical_position.x(), physical_position.y(), color);
}
[[nodiscard]] bool is_volatile() const { return m_volatile; }
void set_volatile();
// Returns true if making the bitmap non-volatile succeeded. `was_purged` indicates status of contents.
// Returns false if there was not enough memory.
[[nodiscard]] bool set_nonvolatile(bool& was_purged);
[[nodiscard]] Core::AnonymousBuffer& anonymous_buffer() { return m_buffer; }
[[nodiscard]] Core::AnonymousBuffer const& anonymous_buffer() const { return m_buffer; }
[[nodiscard]] bool visually_equals(Bitmap const&) const;
[[nodiscard]] Optional<Color> solid_color(u8 alpha_threshold = 0) const;
void flood_visit_from_point(Gfx::IntPoint const& start_point, int threshold, Function<void(Gfx::IntPoint location)> pixel_reached);
private:
Bitmap(BitmapFormat, IntSize const&, int, BackingStore const&);
Bitmap(BitmapFormat, IntSize const&, int, size_t pitch, void*);
Bitmap(BitmapFormat, Core::AnonymousBuffer, IntSize const&, int, Vector<ARGB32> const& palette);
static ErrorOr<BackingStore> allocate_backing_store(BitmapFormat format, IntSize const& size, int scale_factor);
void allocate_palette_from_format(BitmapFormat, Vector<ARGB32> const& source_palette);
IntSize m_size;
int m_scale;
void* m_data { nullptr };
ARGB32* m_palette { nullptr };
size_t m_pitch { 0 };
BitmapFormat m_format { BitmapFormat::Invalid };
bool m_needs_munmap { false };
bool m_volatile { false };
Core::AnonymousBuffer m_buffer;
};
inline u8* Bitmap::scanline_u8(int y)
{
VERIFY(y >= 0 && y < physical_height());
return reinterpret_cast<u8*>(m_data) + (y * m_pitch);
}
inline u8 const* Bitmap::scanline_u8(int y) const
{
VERIFY(y >= 0 && y < physical_height());
return reinterpret_cast<u8 const*>(m_data) + (y * m_pitch);
}
inline ARGB32* Bitmap::scanline(int y)
{
return reinterpret_cast<ARGB32*>(scanline_u8(y));
}
inline ARGB32 const* Bitmap::scanline(int y) const
{
return reinterpret_cast<ARGB32 const*>(scanline_u8(y));
}
template<>
inline Color Bitmap::get_pixel<StorageFormat::BGRx8888>(int x, int y) const
{
VERIFY(x >= 0 && x < physical_width());
return Color::from_rgb(scanline(y)[x]);
}
template<>
inline Color Bitmap::get_pixel<StorageFormat::BGRA8888>(int x, int y) const
{
VERIFY(x >= 0 && x < physical_width());
return Color::from_argb(scanline(y)[x]);
}
template<>
inline Color Bitmap::get_pixel<StorageFormat::Indexed8>(int x, int y) const
{
VERIFY(x >= 0 && x < physical_width());
return Color::from_rgb(m_palette[scanline_u8(y)[x]]);
}
inline Color Bitmap::get_pixel(int x, int y) const
{
switch (determine_storage_format(m_format)) {
case StorageFormat::BGRx8888:
return get_pixel<StorageFormat::BGRx8888>(x, y);
case StorageFormat::BGRA8888:
return get_pixel<StorageFormat::BGRA8888>(x, y);
case StorageFormat::Indexed8:
return get_pixel<StorageFormat::Indexed8>(x, y);
default:
VERIFY_NOT_REACHED();
}
}
template<>
inline void Bitmap::set_pixel<StorageFormat::BGRx8888>(int x, int y, Color color)
{
VERIFY(x >= 0 && x < physical_width());
scanline(y)[x] = color.value();
}
template<>
inline void Bitmap::set_pixel<StorageFormat::BGRA8888>(int x, int y, Color color)
{
VERIFY(x >= 0 && x < physical_width());
scanline(y)[x] = color.value(); // drop alpha
}
template<>
inline void Bitmap::set_pixel<StorageFormat::RGBA8888>(int x, int y, Color color)
{
VERIFY(x >= 0 && x < physical_width());
// FIXME: There's a lot of inaccurately named functions in the Color class right now (RGBA vs BGRA),
// clear those up and then make this more convenient.
auto rgba = (color.alpha() << 24) | (color.blue() << 16) | (color.green() << 8) | color.red();
scanline(y)[x] = rgba;
}
inline void Bitmap::set_pixel(int x, int y, Color color)
{
switch (determine_storage_format(m_format)) {
case StorageFormat::BGRx8888:
set_pixel<StorageFormat::BGRx8888>(x, y, color);
break;
case StorageFormat::BGRA8888:
set_pixel<StorageFormat::BGRA8888>(x, y, color);
break;
case StorageFormat::RGBA8888:
set_pixel<StorageFormat::RGBA8888>(x, y, color);
break;
case StorageFormat::Indexed8:
VERIFY_NOT_REACHED();
default:
VERIFY_NOT_REACHED();
}
}
}