ladybird/Kernel/Net/E1000NetworkAdapter.cpp

445 lines
15 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MACAddress.h>
#include <Kernel/Debug.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
namespace Kernel {
#define REG_CTRL 0x0000
#define REG_STATUS 0x0008
#define REG_EEPROM 0x0014
#define REG_CTRL_EXT 0x0018
#define REG_INTERRUPT_CAUSE_READ 0x00C0
#define REG_INTERRUPT_RATE 0x00C4
#define REG_INTERRUPT_MASK_SET 0x00D0
#define REG_INTERRUPT_MASK_CLEAR 0x00D8
#define REG_RCTRL 0x0100
#define REG_RXDESCLO 0x2800
#define REG_RXDESCHI 0x2804
#define REG_RXDESCLEN 0x2808
#define REG_RXDESCHEAD 0x2810
#define REG_RXDESCTAIL 0x2818
#define REG_TCTRL 0x0400
#define REG_TXDESCLO 0x3800
#define REG_TXDESCHI 0x3804
#define REG_TXDESCLEN 0x3808
#define REG_TXDESCHEAD 0x3810
#define REG_TXDESCTAIL 0x3818
#define REG_RDTR 0x2820 // RX Delay Timer Register
#define REG_RXDCTL 0x3828 // RX Descriptor Control
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
#define ECTRL_SLU 0x40 //set link up
#define RCTL_EN (1 << 1) // Receiver Enable
#define RCTL_SBP (1 << 2) // Store Bad Packets
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
#define RCTL_LBM_NONE (0 << 6) // No Loopback
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
#define RCTL_DPF (1 << 22) // Discard Pause Frames
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
// Buffer Sizes
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
// Transmit Command
#define CMD_EOP (1 << 0) // End of Packet
#define CMD_IFCS (1 << 1) // Insert FCS
#define CMD_IC (1 << 2) // Insert Checksum
#define CMD_RS (1 << 3) // Report Status
#define CMD_RPS (1 << 4) // Report Packet Sent
#define CMD_VLE (1 << 6) // VLAN Packet Enable
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
// TCTL Register
#define TCTL_EN (1 << 1) // Transmit Enable
#define TCTL_PSP (1 << 3) // Pad Short Packets
#define TCTL_CT_SHIFT 4 // Collision Threshold
#define TCTL_COLD_SHIFT 12 // Collision Distance
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
#define TSTA_DD (1 << 0) // Descriptor Done
#define TSTA_EC (1 << 1) // Excess Collisions
#define TSTA_LC (1 << 2) // Late Collision
#define LSTA_TU (1 << 3) // Transmit Underrun
// STATUS Register
#define STATUS_FD 0x01
#define STATUS_LU 0x02
#define STATUS_TXOFF 0x08
#define STATUS_SPEED 0xC0
#define STATUS_SPEED_10MB 0x00
#define STATUS_SPEED_100MB 0x40
#define STATUS_SPEED_1000MB1 0x80
#define STATUS_SPEED_1000MB2 0xC0
// Interrupt Masks
#define INTERRUPT_TXDW (1 << 0)
#define INTERRUPT_TXQE (1 << 1)
#define INTERRUPT_LSC (1 << 2)
#define INTERRUPT_RXSEQ (1 << 3)
#define INTERRUPT_RXDMT0 (1 << 4)
#define INTERRUPT_RXO (1 << 6)
#define INTERRUPT_RXT0 (1 << 7)
#define INTERRUPT_MDAC (1 << 9)
#define INTERRUPT_RXCFG (1 << 10)
#define INTERRUPT_PHYINT (1 << 12)
#define INTERRUPT_TXD_LOW (1 << 15)
#define INTERRUPT_SRPD (1 << 16)
#define PCI_VENDOR_INTEL 0x8086
// https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf Section 5.2
static bool is_valid_device_id(u16 device_id)
{
// FIXME: It would be nice to distinguish which particular device it is.
// Especially since it's needed to determine which registers we can access.
// The reason I haven't done it now is because there's some IDs with multiple devices
// and some devices with multiple IDs.
switch (device_id) {
case 0x1019: // 82547EI-A0, 82547EI-A1, 82547EI-B0, 82547GI-B0
case 0x101A: // 82547EI-B0
case 0x1010: // 82546EB-A1
case 0x1012: // 82546EB-A1
case 0x101D: // 82546EB-A1
case 0x1079: // 82546GB-B0
case 0x107A: // 82546GB-B0
case 0x107B: // 82546GB-B0
case 0x100F: // 82545EM-A
case 0x1011: // 82545EM-A
case 0x1026: // 82545GM-B
case 0x1027: // 82545GM-B
case 0x1028: // 82545GM-B
case 0x1107: // 82544EI-A4
case 0x1112: // 82544GC-A4
case 0x1013: // 82541EI-A0, 82541EI-B0
case 0x1018: // 82541EI-B0
case 0x1076: // 82541GI-B1, 82541PI-C0
case 0x1077: // 82541GI-B1
case 0x1078: // 82541ER-C0
case 0x1017: // 82540EP-A
case 0x1016: // 82540EP-A
case 0x100E: // 82540EM-A
case 0x1015: // 82540EM-A
return true;
default:
return false;
}
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::detect()
{
PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
if (address.is_null())
return;
if (id.vendor_id != PCI_VENDOR_INTEL)
return;
if (!is_valid_device_id(id.device_id))
return;
u8 irq = PCI::get_interrupt_line(address);
[[maybe_unused]] auto& unused = adopt_ref(*new E1000NetworkAdapter(address, irq)).leak_ref();
});
}
UNMAP_AFTER_INIT E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address address, u8 irq)
: PCI::Device(address, irq)
, m_io_base(PCI::get_BAR1(pci_address()) & ~1)
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16), "E1000 RX", Region::Access::Read | Region::Access::Write))
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16), "E1000 TX", Region::Access::Read | Region::Access::Write))
{
set_interface_name("e1k");
dmesgln("E1000: Found @ {}", pci_address());
enable_bus_mastering(pci_address());
size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0);
m_mmio_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), page_round_up(mmio_base_size), "E1000 MMIO", Region::Access::Read | Region::Access::Write, Region::Cacheable::No);
m_mmio_base = m_mmio_region->vaddr();
m_use_mmio = true;
m_interrupt_line = PCI::get_interrupt_line(pci_address());
dmesgln("E1000: port base: {}", m_io_base);
dmesgln("E1000: MMIO base: {}", PhysicalAddress(PCI::get_BAR0(pci_address()) & 0xfffffffc));
dmesgln("E1000: MMIO base size: {} bytes", mmio_base_size);
dmesgln("E1000: Interrupt line: {}", m_interrupt_line);
detect_eeprom();
dmesgln("E1000: Has EEPROM? {}", m_has_eeprom);
read_mac_address();
const auto& mac = mac_address();
dmesgln("E1000: MAC address: {}", mac.to_string());
u32 flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
out32(REG_INTERRUPT_RATE, 6000); // Interrupt rate of 1.536 milliseconds
initialize_rx_descriptors();
initialize_tx_descriptors();
out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0 | INTERRUPT_RXO);
in32(REG_INTERRUPT_CAUSE_READ);
enable_irq();
}
UNMAP_AFTER_INIT E1000NetworkAdapter::~E1000NetworkAdapter()
{
}
void E1000NetworkAdapter::handle_irq(const RegisterState&)
{
u32 status = in32(REG_INTERRUPT_CAUSE_READ);
m_entropy_source.add_random_event(status);
if (status & INTERRUPT_LSC) {
u32 flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
}
if (status & INTERRUPT_RXDMT0) {
// Threshold OK?
}
if (status & INTERRUPT_RXO) {
dbgln_if(E1000_DEBUG, "E1000: RX buffer overrun");
}
if (status & INTERRUPT_RXT0) {
receive();
}
m_wait_queue.wake_all();
out32(REG_INTERRUPT_CAUSE_READ, 0xffffffff);
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::detect_eeprom()
{
out32(REG_EEPROM, 0x1);
for (int i = 0; i < 999; ++i) {
u32 data = in32(REG_EEPROM);
if (data & 0x10) {
m_has_eeprom = true;
return;
}
}
m_has_eeprom = false;
}
UNMAP_AFTER_INIT u32 E1000NetworkAdapter::read_eeprom(u8 address)
{
u16 data = 0;
u32 tmp = 0;
if (m_has_eeprom) {
out32(REG_EEPROM, ((u32)address << 8) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 4)))
;
} else {
out32(REG_EEPROM, ((u32)address << 2) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 1)))
;
}
data = (tmp >> 16) & 0xffff;
return data;
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::read_mac_address()
{
if (m_has_eeprom) {
MACAddress mac {};
u32 tmp = read_eeprom(0);
mac[0] = tmp & 0xff;
mac[1] = tmp >> 8;
tmp = read_eeprom(1);
mac[2] = tmp & 0xff;
mac[3] = tmp >> 8;
tmp = read_eeprom(2);
mac[4] = tmp & 0xff;
mac[5] = tmp >> 8;
set_mac_address(mac);
} else {
VERIFY_NOT_REACHED();
}
}
bool E1000NetworkAdapter::link_up()
{
return (in32(REG_STATUS) & STATUS_LU);
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_rx_descriptors()
{
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
for (size_t i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = rx_descriptors[i];
auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 RX buffer", Region::Access::Read | Region::Access::Write);
VERIFY(region);
m_rx_buffers_regions.append(region.release_nonnull());
descriptor.addr = m_rx_buffers_regions[i].physical_page(0)->paddr().get();
descriptor.status = 0;
}
out32(REG_RXDESCLO, m_rx_descriptors_region->physical_page(0)->paddr().get());
out32(REG_RXDESCHI, 0);
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
out32(REG_RXDESCHEAD, 0);
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_tx_descriptors()
{
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
for (size_t i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = tx_descriptors[i];
auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 TX buffer", Region::Access::Read | Region::Access::Write);
VERIFY(region);
m_tx_buffers_regions.append(region.release_nonnull());
descriptor.addr = m_tx_buffers_regions[i].physical_page(0)->paddr().get();
descriptor.cmd = 0;
}
out32(REG_TXDESCLO, m_tx_descriptors_region->physical_page(0)->paddr().get());
out32(REG_TXDESCHI, 0);
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
out32(REG_TXDESCHEAD, 0);
out32(REG_TXDESCTAIL, 0);
out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP);
out32(REG_TIPG, 0x0060200A);
}
void E1000NetworkAdapter::out8(u16 address, u8 data)
{
dbgln_if(E1000_DEBUG, "E1000: OUT8 {:#02x} @ {:#04x}", data, address);
if (m_use_mmio) {
auto* ptr = (volatile u8*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
m_io_base.offset(address).out(data);
}
void E1000NetworkAdapter::out16(u16 address, u16 data)
{
dbgln_if(E1000_DEBUG, "E1000: OUT16 {:#04x} @ {:#04x}", data, address);
if (m_use_mmio) {
auto* ptr = (volatile u16*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
m_io_base.offset(address).out(data);
}
void E1000NetworkAdapter::out32(u16 address, u32 data)
{
dbgln_if(E1000_DEBUG, "E1000: OUT32 {:#08x} @ {:#04x}", data, address);
if (m_use_mmio) {
auto* ptr = (volatile u32*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
m_io_base.offset(address).out(data);
}
u8 E1000NetworkAdapter::in8(u16 address)
{
dbgln_if(E1000_DEBUG, "E1000: IN8 @ {:#04x}", address);
if (m_use_mmio)
return *(volatile u8*)(m_mmio_base.get() + address);
return m_io_base.offset(address).in<u8>();
}
u16 E1000NetworkAdapter::in16(u16 address)
{
dbgln_if(E1000_DEBUG, "E1000: IN16 @ {:#04x}", address);
if (m_use_mmio)
return *(volatile u16*)(m_mmio_base.get() + address);
return m_io_base.offset(address).in<u16>();
}
u32 E1000NetworkAdapter::in32(u16 address)
{
dbgln_if(E1000_DEBUG, "E1000: IN32 @ {:#04x}", address);
if (m_use_mmio)
return *(volatile u32*)(m_mmio_base.get() + address);
return m_io_base.offset(address).in<u32>();
}
void E1000NetworkAdapter::send_raw(ReadonlyBytes payload)
{
disable_irq();
size_t tx_current = in32(REG_TXDESCTAIL) % number_of_tx_descriptors;
dbgln_if(E1000_DEBUG, "E1000: Sending packet ({} bytes)", payload.size());
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
auto& descriptor = tx_descriptors[tx_current];
VERIFY(payload.size() <= 8192);
auto* vptr = (void*)m_tx_buffers_regions[tx_current].vaddr().as_ptr();
memcpy(vptr, payload.data(), payload.size());
descriptor.length = payload.size();
descriptor.status = 0;
descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS;
dbgln_if(E1000_DEBUG, "E1000: Using tx descriptor {} (head is at {})", tx_current, in32(REG_TXDESCHEAD));
tx_current = (tx_current + 1) % number_of_tx_descriptors;
cli();
enable_irq();
out32(REG_TXDESCTAIL, tx_current);
for (;;) {
if (descriptor.status) {
sti();
break;
}
m_wait_queue.wait_forever("E1000NetworkAdapter");
}
dbgln_if(E1000_DEBUG, "E1000: Sent packet, status is now {:#02x}!", (u8)descriptor.status);
}
void E1000NetworkAdapter::receive()
{
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
u32 rx_current;
for (u32 i = 0; i < number_of_rx_descriptors; i++) {
rx_current = in32(REG_RXDESCTAIL) % number_of_rx_descriptors;
rx_current = (rx_current + 1) % number_of_rx_descriptors;
if (!(rx_descriptors[rx_current].status & 1))
break;
auto* buffer = m_rx_buffers_regions[rx_current].vaddr().as_ptr();
u16 length = rx_descriptors[rx_current].length;
VERIFY(length <= 8192);
dbgln_if(E1000_DEBUG, "E1000: Received 1 packet @ {:p} ({} bytes)", buffer, length);
did_receive({ buffer, length });
rx_descriptors[rx_current].status = 0;
out32(REG_RXDESCTAIL, rx_current);
}
}
}