mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-23 16:10:20 +00:00
445 lines
15 KiB
C++
445 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/MACAddress.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Net/E1000NetworkAdapter.h>
|
|
|
|
namespace Kernel {
|
|
|
|
#define REG_CTRL 0x0000
|
|
#define REG_STATUS 0x0008
|
|
#define REG_EEPROM 0x0014
|
|
#define REG_CTRL_EXT 0x0018
|
|
#define REG_INTERRUPT_CAUSE_READ 0x00C0
|
|
#define REG_INTERRUPT_RATE 0x00C4
|
|
#define REG_INTERRUPT_MASK_SET 0x00D0
|
|
#define REG_INTERRUPT_MASK_CLEAR 0x00D8
|
|
#define REG_RCTRL 0x0100
|
|
#define REG_RXDESCLO 0x2800
|
|
#define REG_RXDESCHI 0x2804
|
|
#define REG_RXDESCLEN 0x2808
|
|
#define REG_RXDESCHEAD 0x2810
|
|
#define REG_RXDESCTAIL 0x2818
|
|
#define REG_TCTRL 0x0400
|
|
#define REG_TXDESCLO 0x3800
|
|
#define REG_TXDESCHI 0x3804
|
|
#define REG_TXDESCLEN 0x3808
|
|
#define REG_TXDESCHEAD 0x3810
|
|
#define REG_TXDESCTAIL 0x3818
|
|
#define REG_RDTR 0x2820 // RX Delay Timer Register
|
|
#define REG_RXDCTL 0x3828 // RX Descriptor Control
|
|
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
|
|
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
|
|
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
|
|
#define ECTRL_SLU 0x40 //set link up
|
|
#define RCTL_EN (1 << 1) // Receiver Enable
|
|
#define RCTL_SBP (1 << 2) // Store Bad Packets
|
|
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
|
|
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
|
|
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
|
|
#define RCTL_LBM_NONE (0 << 6) // No Loopback
|
|
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
|
|
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
|
|
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
|
|
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
|
|
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
|
|
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
|
|
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
|
|
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
|
|
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
|
|
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
|
|
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
|
|
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
|
|
#define RCTL_DPF (1 << 22) // Discard Pause Frames
|
|
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
|
|
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
|
|
|
|
// Buffer Sizes
|
|
#define RCTL_BSIZE_256 (3 << 16)
|
|
#define RCTL_BSIZE_512 (2 << 16)
|
|
#define RCTL_BSIZE_1024 (1 << 16)
|
|
#define RCTL_BSIZE_2048 (0 << 16)
|
|
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
|
|
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
|
|
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
|
|
|
|
// Transmit Command
|
|
|
|
#define CMD_EOP (1 << 0) // End of Packet
|
|
#define CMD_IFCS (1 << 1) // Insert FCS
|
|
#define CMD_IC (1 << 2) // Insert Checksum
|
|
#define CMD_RS (1 << 3) // Report Status
|
|
#define CMD_RPS (1 << 4) // Report Packet Sent
|
|
#define CMD_VLE (1 << 6) // VLAN Packet Enable
|
|
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
|
|
|
|
// TCTL Register
|
|
|
|
#define TCTL_EN (1 << 1) // Transmit Enable
|
|
#define TCTL_PSP (1 << 3) // Pad Short Packets
|
|
#define TCTL_CT_SHIFT 4 // Collision Threshold
|
|
#define TCTL_COLD_SHIFT 12 // Collision Distance
|
|
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
|
|
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
|
|
|
|
#define TSTA_DD (1 << 0) // Descriptor Done
|
|
#define TSTA_EC (1 << 1) // Excess Collisions
|
|
#define TSTA_LC (1 << 2) // Late Collision
|
|
#define LSTA_TU (1 << 3) // Transmit Underrun
|
|
|
|
// STATUS Register
|
|
|
|
#define STATUS_FD 0x01
|
|
#define STATUS_LU 0x02
|
|
#define STATUS_TXOFF 0x08
|
|
#define STATUS_SPEED 0xC0
|
|
#define STATUS_SPEED_10MB 0x00
|
|
#define STATUS_SPEED_100MB 0x40
|
|
#define STATUS_SPEED_1000MB1 0x80
|
|
#define STATUS_SPEED_1000MB2 0xC0
|
|
|
|
// Interrupt Masks
|
|
|
|
#define INTERRUPT_TXDW (1 << 0)
|
|
#define INTERRUPT_TXQE (1 << 1)
|
|
#define INTERRUPT_LSC (1 << 2)
|
|
#define INTERRUPT_RXSEQ (1 << 3)
|
|
#define INTERRUPT_RXDMT0 (1 << 4)
|
|
#define INTERRUPT_RXO (1 << 6)
|
|
#define INTERRUPT_RXT0 (1 << 7)
|
|
#define INTERRUPT_MDAC (1 << 9)
|
|
#define INTERRUPT_RXCFG (1 << 10)
|
|
#define INTERRUPT_PHYINT (1 << 12)
|
|
#define INTERRUPT_TXD_LOW (1 << 15)
|
|
#define INTERRUPT_SRPD (1 << 16)
|
|
|
|
#define PCI_VENDOR_INTEL 0x8086
|
|
|
|
// https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf Section 5.2
|
|
static bool is_valid_device_id(u16 device_id)
|
|
{
|
|
// FIXME: It would be nice to distinguish which particular device it is.
|
|
// Especially since it's needed to determine which registers we can access.
|
|
// The reason I haven't done it now is because there's some IDs with multiple devices
|
|
// and some devices with multiple IDs.
|
|
switch (device_id) {
|
|
case 0x1019: // 82547EI-A0, 82547EI-A1, 82547EI-B0, 82547GI-B0
|
|
case 0x101A: // 82547EI-B0
|
|
case 0x1010: // 82546EB-A1
|
|
case 0x1012: // 82546EB-A1
|
|
case 0x101D: // 82546EB-A1
|
|
case 0x1079: // 82546GB-B0
|
|
case 0x107A: // 82546GB-B0
|
|
case 0x107B: // 82546GB-B0
|
|
case 0x100F: // 82545EM-A
|
|
case 0x1011: // 82545EM-A
|
|
case 0x1026: // 82545GM-B
|
|
case 0x1027: // 82545GM-B
|
|
case 0x1028: // 82545GM-B
|
|
case 0x1107: // 82544EI-A4
|
|
case 0x1112: // 82544GC-A4
|
|
case 0x1013: // 82541EI-A0, 82541EI-B0
|
|
case 0x1018: // 82541EI-B0
|
|
case 0x1076: // 82541GI-B1, 82541PI-C0
|
|
case 0x1077: // 82541GI-B1
|
|
case 0x1078: // 82541ER-C0
|
|
case 0x1017: // 82540EP-A
|
|
case 0x1016: // 82540EP-A
|
|
case 0x100E: // 82540EM-A
|
|
case 0x1015: // 82540EM-A
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::detect()
|
|
{
|
|
PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
|
|
if (address.is_null())
|
|
return;
|
|
if (id.vendor_id != PCI_VENDOR_INTEL)
|
|
return;
|
|
if (!is_valid_device_id(id.device_id))
|
|
return;
|
|
u8 irq = PCI::get_interrupt_line(address);
|
|
[[maybe_unused]] auto& unused = adopt_ref(*new E1000NetworkAdapter(address, irq)).leak_ref();
|
|
});
|
|
}
|
|
|
|
UNMAP_AFTER_INIT E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address address, u8 irq)
|
|
: PCI::Device(address, irq)
|
|
, m_io_base(PCI::get_BAR1(pci_address()) & ~1)
|
|
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16), "E1000 RX", Region::Access::Read | Region::Access::Write))
|
|
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16), "E1000 TX", Region::Access::Read | Region::Access::Write))
|
|
{
|
|
set_interface_name("e1k");
|
|
|
|
dmesgln("E1000: Found @ {}", pci_address());
|
|
|
|
enable_bus_mastering(pci_address());
|
|
|
|
size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0);
|
|
m_mmio_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), page_round_up(mmio_base_size), "E1000 MMIO", Region::Access::Read | Region::Access::Write, Region::Cacheable::No);
|
|
m_mmio_base = m_mmio_region->vaddr();
|
|
m_use_mmio = true;
|
|
m_interrupt_line = PCI::get_interrupt_line(pci_address());
|
|
dmesgln("E1000: port base: {}", m_io_base);
|
|
dmesgln("E1000: MMIO base: {}", PhysicalAddress(PCI::get_BAR0(pci_address()) & 0xfffffffc));
|
|
dmesgln("E1000: MMIO base size: {} bytes", mmio_base_size);
|
|
dmesgln("E1000: Interrupt line: {}", m_interrupt_line);
|
|
detect_eeprom();
|
|
dmesgln("E1000: Has EEPROM? {}", m_has_eeprom);
|
|
read_mac_address();
|
|
const auto& mac = mac_address();
|
|
dmesgln("E1000: MAC address: {}", mac.to_string());
|
|
|
|
u32 flags = in32(REG_CTRL);
|
|
out32(REG_CTRL, flags | ECTRL_SLU);
|
|
|
|
out32(REG_INTERRUPT_RATE, 6000); // Interrupt rate of 1.536 milliseconds
|
|
|
|
initialize_rx_descriptors();
|
|
initialize_tx_descriptors();
|
|
|
|
out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0 | INTERRUPT_RXO);
|
|
in32(REG_INTERRUPT_CAUSE_READ);
|
|
|
|
enable_irq();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT E1000NetworkAdapter::~E1000NetworkAdapter()
|
|
{
|
|
}
|
|
|
|
void E1000NetworkAdapter::handle_irq(const RegisterState&)
|
|
{
|
|
u32 status = in32(REG_INTERRUPT_CAUSE_READ);
|
|
|
|
m_entropy_source.add_random_event(status);
|
|
|
|
if (status & INTERRUPT_LSC) {
|
|
u32 flags = in32(REG_CTRL);
|
|
out32(REG_CTRL, flags | ECTRL_SLU);
|
|
}
|
|
if (status & INTERRUPT_RXDMT0) {
|
|
// Threshold OK?
|
|
}
|
|
if (status & INTERRUPT_RXO) {
|
|
dbgln_if(E1000_DEBUG, "E1000: RX buffer overrun");
|
|
}
|
|
if (status & INTERRUPT_RXT0) {
|
|
receive();
|
|
}
|
|
|
|
m_wait_queue.wake_all();
|
|
|
|
out32(REG_INTERRUPT_CAUSE_READ, 0xffffffff);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::detect_eeprom()
|
|
{
|
|
out32(REG_EEPROM, 0x1);
|
|
for (int i = 0; i < 999; ++i) {
|
|
u32 data = in32(REG_EEPROM);
|
|
if (data & 0x10) {
|
|
m_has_eeprom = true;
|
|
return;
|
|
}
|
|
}
|
|
m_has_eeprom = false;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT u32 E1000NetworkAdapter::read_eeprom(u8 address)
|
|
{
|
|
u16 data = 0;
|
|
u32 tmp = 0;
|
|
if (m_has_eeprom) {
|
|
out32(REG_EEPROM, ((u32)address << 8) | 1);
|
|
while (!((tmp = in32(REG_EEPROM)) & (1 << 4)))
|
|
;
|
|
} else {
|
|
out32(REG_EEPROM, ((u32)address << 2) | 1);
|
|
while (!((tmp = in32(REG_EEPROM)) & (1 << 1)))
|
|
;
|
|
}
|
|
data = (tmp >> 16) & 0xffff;
|
|
return data;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::read_mac_address()
|
|
{
|
|
if (m_has_eeprom) {
|
|
MACAddress mac {};
|
|
u32 tmp = read_eeprom(0);
|
|
mac[0] = tmp & 0xff;
|
|
mac[1] = tmp >> 8;
|
|
tmp = read_eeprom(1);
|
|
mac[2] = tmp & 0xff;
|
|
mac[3] = tmp >> 8;
|
|
tmp = read_eeprom(2);
|
|
mac[4] = tmp & 0xff;
|
|
mac[5] = tmp >> 8;
|
|
set_mac_address(mac);
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
bool E1000NetworkAdapter::link_up()
|
|
{
|
|
return (in32(REG_STATUS) & STATUS_LU);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_rx_descriptors()
|
|
{
|
|
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
|
|
for (size_t i = 0; i < number_of_rx_descriptors; ++i) {
|
|
auto& descriptor = rx_descriptors[i];
|
|
auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 RX buffer", Region::Access::Read | Region::Access::Write);
|
|
VERIFY(region);
|
|
m_rx_buffers_regions.append(region.release_nonnull());
|
|
descriptor.addr = m_rx_buffers_regions[i].physical_page(0)->paddr().get();
|
|
descriptor.status = 0;
|
|
}
|
|
|
|
out32(REG_RXDESCLO, m_rx_descriptors_region->physical_page(0)->paddr().get());
|
|
out32(REG_RXDESCHI, 0);
|
|
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
|
|
out32(REG_RXDESCHEAD, 0);
|
|
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
|
|
|
|
out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_tx_descriptors()
|
|
{
|
|
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
|
|
for (size_t i = 0; i < number_of_tx_descriptors; ++i) {
|
|
auto& descriptor = tx_descriptors[i];
|
|
auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 TX buffer", Region::Access::Read | Region::Access::Write);
|
|
VERIFY(region);
|
|
m_tx_buffers_regions.append(region.release_nonnull());
|
|
descriptor.addr = m_tx_buffers_regions[i].physical_page(0)->paddr().get();
|
|
descriptor.cmd = 0;
|
|
}
|
|
|
|
out32(REG_TXDESCLO, m_tx_descriptors_region->physical_page(0)->paddr().get());
|
|
out32(REG_TXDESCHI, 0);
|
|
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
|
|
out32(REG_TXDESCHEAD, 0);
|
|
out32(REG_TXDESCTAIL, 0);
|
|
|
|
out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP);
|
|
out32(REG_TIPG, 0x0060200A);
|
|
}
|
|
|
|
void E1000NetworkAdapter::out8(u16 address, u8 data)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: OUT8 {:#02x} @ {:#04x}", data, address);
|
|
if (m_use_mmio) {
|
|
auto* ptr = (volatile u8*)(m_mmio_base.get() + address);
|
|
*ptr = data;
|
|
return;
|
|
}
|
|
m_io_base.offset(address).out(data);
|
|
}
|
|
|
|
void E1000NetworkAdapter::out16(u16 address, u16 data)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: OUT16 {:#04x} @ {:#04x}", data, address);
|
|
if (m_use_mmio) {
|
|
auto* ptr = (volatile u16*)(m_mmio_base.get() + address);
|
|
*ptr = data;
|
|
return;
|
|
}
|
|
m_io_base.offset(address).out(data);
|
|
}
|
|
|
|
void E1000NetworkAdapter::out32(u16 address, u32 data)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: OUT32 {:#08x} @ {:#04x}", data, address);
|
|
if (m_use_mmio) {
|
|
auto* ptr = (volatile u32*)(m_mmio_base.get() + address);
|
|
*ptr = data;
|
|
return;
|
|
}
|
|
m_io_base.offset(address).out(data);
|
|
}
|
|
|
|
u8 E1000NetworkAdapter::in8(u16 address)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: IN8 @ {:#04x}", address);
|
|
if (m_use_mmio)
|
|
return *(volatile u8*)(m_mmio_base.get() + address);
|
|
return m_io_base.offset(address).in<u8>();
|
|
}
|
|
|
|
u16 E1000NetworkAdapter::in16(u16 address)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: IN16 @ {:#04x}", address);
|
|
if (m_use_mmio)
|
|
return *(volatile u16*)(m_mmio_base.get() + address);
|
|
return m_io_base.offset(address).in<u16>();
|
|
}
|
|
|
|
u32 E1000NetworkAdapter::in32(u16 address)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: IN32 @ {:#04x}", address);
|
|
if (m_use_mmio)
|
|
return *(volatile u32*)(m_mmio_base.get() + address);
|
|
return m_io_base.offset(address).in<u32>();
|
|
}
|
|
|
|
void E1000NetworkAdapter::send_raw(ReadonlyBytes payload)
|
|
{
|
|
disable_irq();
|
|
size_t tx_current = in32(REG_TXDESCTAIL) % number_of_tx_descriptors;
|
|
dbgln_if(E1000_DEBUG, "E1000: Sending packet ({} bytes)", payload.size());
|
|
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
|
|
auto& descriptor = tx_descriptors[tx_current];
|
|
VERIFY(payload.size() <= 8192);
|
|
auto* vptr = (void*)m_tx_buffers_regions[tx_current].vaddr().as_ptr();
|
|
memcpy(vptr, payload.data(), payload.size());
|
|
descriptor.length = payload.size();
|
|
descriptor.status = 0;
|
|
descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS;
|
|
dbgln_if(E1000_DEBUG, "E1000: Using tx descriptor {} (head is at {})", tx_current, in32(REG_TXDESCHEAD));
|
|
tx_current = (tx_current + 1) % number_of_tx_descriptors;
|
|
cli();
|
|
enable_irq();
|
|
out32(REG_TXDESCTAIL, tx_current);
|
|
for (;;) {
|
|
if (descriptor.status) {
|
|
sti();
|
|
break;
|
|
}
|
|
m_wait_queue.wait_forever("E1000NetworkAdapter");
|
|
}
|
|
dbgln_if(E1000_DEBUG, "E1000: Sent packet, status is now {:#02x}!", (u8)descriptor.status);
|
|
}
|
|
|
|
void E1000NetworkAdapter::receive()
|
|
{
|
|
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
|
|
u32 rx_current;
|
|
for (u32 i = 0; i < number_of_rx_descriptors; i++) {
|
|
rx_current = in32(REG_RXDESCTAIL) % number_of_rx_descriptors;
|
|
rx_current = (rx_current + 1) % number_of_rx_descriptors;
|
|
if (!(rx_descriptors[rx_current].status & 1))
|
|
break;
|
|
auto* buffer = m_rx_buffers_regions[rx_current].vaddr().as_ptr();
|
|
u16 length = rx_descriptors[rx_current].length;
|
|
VERIFY(length <= 8192);
|
|
dbgln_if(E1000_DEBUG, "E1000: Received 1 packet @ {:p} ({} bytes)", buffer, length);
|
|
did_receive({ buffer, length });
|
|
rx_descriptors[rx_current].status = 0;
|
|
out32(REG_RXDESCTAIL, rx_current);
|
|
}
|
|
}
|
|
|
|
}
|