mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-25 17:10:23 +00:00
122 lines
3.9 KiB
C++
122 lines
3.9 KiB
C++
/*
|
|
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@gmx.de>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <LibGfx/Matrix.h>
|
|
#include <LibGfx/Vector3.h>
|
|
#include <math.h>
|
|
|
|
namespace Gfx {
|
|
|
|
template<typename T>
|
|
class Matrix4x4 final : public Matrix<4, T> {
|
|
public:
|
|
Matrix4x4() = default;
|
|
Matrix4x4(T _11, T _12, T _13, T _14,
|
|
T _21, T _22, T _23, T _24,
|
|
T _31, T _32, T _33, T _34,
|
|
T _41, T _42, T _43, T _44)
|
|
: m_elements {
|
|
_11, _12, _13, _14,
|
|
_21, _22, _23, _24,
|
|
_31, _32, _33, _34,
|
|
_41, _42, _43, _44
|
|
}
|
|
{
|
|
}
|
|
|
|
auto elements() const { return m_elements; }
|
|
auto elements() { return m_elements; }
|
|
|
|
Matrix4x4 operator*(const Matrix4x4& other) const
|
|
{
|
|
Matrix4x4 product;
|
|
for (int i = 0; i < 4; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
product.m_elements[i][j] = m_elements[0][j] * other.m_elements[i][0]
|
|
+ m_elements[1][j] * other.m_elements[i][1]
|
|
+ m_elements[2][j] * other.m_elements[i][2]
|
|
+ m_elements[3][j] * other.m_elements[i][3];
|
|
}
|
|
}
|
|
return product;
|
|
}
|
|
|
|
Vector3<T> transform_point(const Vector3<T>& p) const
|
|
{
|
|
return Vector3<T>(
|
|
p.x() * m_elements[0][0] + p.y() * m_elements[1][0] + p.z() * m_elements[2][0] + m_elements[3][0],
|
|
p.x() * m_elements[0][1] + p.y() * m_elements[1][1] + p.z() * m_elements[2][1] + m_elements[3][1],
|
|
p.x() * m_elements[0][2] + p.y() * m_elements[1][2] + p.z() * m_elements[2][2] + m_elements[3][2]);
|
|
}
|
|
|
|
static Matrix4x4 translate(const Vector3<T>& p)
|
|
{
|
|
return Matrix4x4(
|
|
1, 0, 0, 0,
|
|
0, 1, 0, 0,
|
|
0, 0, 1, 0,
|
|
p.x(), p.y(), p.z(), 1);
|
|
}
|
|
|
|
static Matrix4x4 scale(const Vector3<T>& s)
|
|
{
|
|
return Matrix4x4(
|
|
s.x(), 0, 0, 0,
|
|
0, s.y(), 0, 0,
|
|
0, 0, s.z(), 0,
|
|
0, 0, 0, 1);
|
|
}
|
|
|
|
static Matrix4x4 rotate(const Vector3<T>& axis, T angle)
|
|
{
|
|
T c = cos(angle);
|
|
T s = sin(angle);
|
|
T t = 1 - c;
|
|
T x = axis.x();
|
|
T y = axis.y();
|
|
T z = axis.z();
|
|
|
|
return Matrix4x4(
|
|
t * x * x + c, t * x * y - z * s, t * x * z + y * s, 0,
|
|
t * x * y + z * s, t * y * y + c, t * y * z - x * s, 0,
|
|
t * x * z - y * s, t * y * z + x * s, t * z * z + c, 0,
|
|
0, 0, 0, 1);
|
|
}
|
|
|
|
private:
|
|
T m_elements[4][4];
|
|
};
|
|
|
|
typedef Matrix4x4<float> FloatMatrix4x4;
|
|
typedef Matrix4x4<double> DoubleMatrix4x4;
|
|
|
|
}
|
|
|
|
using Gfx::DoubleMatrix4x4;
|
|
using Gfx::FloatMatrix4x4;
|
|
using Gfx::Matrix4x4;
|