mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-23 08:00:20 +00:00
187 lines
6.1 KiB
C++
187 lines
6.1 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/Memory.h>
|
|
#include <Kernel/Heap/SlabAllocator.h>
|
|
#include <Kernel/Heap/kmalloc.h>
|
|
#include <Kernel/SpinLock.h>
|
|
#include <Kernel/VM/Region.h>
|
|
|
|
#define SANITIZE_SLABS
|
|
|
|
namespace Kernel {
|
|
|
|
template<size_t templated_slab_size>
|
|
class SlabAllocator {
|
|
public:
|
|
SlabAllocator() { }
|
|
|
|
void init(size_t size)
|
|
{
|
|
m_base = kmalloc_eternal(size);
|
|
m_end = (u8*)m_base + size;
|
|
FreeSlab* slabs = (FreeSlab*)m_base;
|
|
m_slab_count = size / templated_slab_size;
|
|
for (size_t i = 1; i < m_slab_count; ++i) {
|
|
slabs[i].next = &slabs[i - 1];
|
|
}
|
|
slabs[0].next = nullptr;
|
|
m_freelist = &slabs[m_slab_count - 1];
|
|
m_num_allocated = 0;
|
|
}
|
|
|
|
constexpr size_t slab_size() const { return templated_slab_size; }
|
|
size_t slab_count() const { return m_slab_count; }
|
|
|
|
void* alloc()
|
|
{
|
|
FreeSlab* free_slab;
|
|
{
|
|
// We want to avoid being swapped out in the middle of this
|
|
ScopedCritical critical;
|
|
FreeSlab* next_free;
|
|
free_slab = m_freelist.load(AK::memory_order_consume);
|
|
do {
|
|
if (!free_slab)
|
|
return kmalloc(slab_size());
|
|
// It's possible another processor is doing the same thing at
|
|
// the same time, so next_free *can* be a bogus pointer. However,
|
|
// in that case compare_exchange_strong would fail and we would
|
|
// try again.
|
|
next_free = free_slab->next;
|
|
} while (!m_freelist.compare_exchange_strong(free_slab, next_free, AK::memory_order_acq_rel));
|
|
|
|
m_num_allocated++;
|
|
}
|
|
|
|
#ifdef SANITIZE_SLABS
|
|
memset(free_slab, SLAB_ALLOC_SCRUB_BYTE, slab_size());
|
|
#endif
|
|
return free_slab;
|
|
}
|
|
|
|
void dealloc(void* ptr)
|
|
{
|
|
ASSERT(ptr);
|
|
if (ptr < m_base || ptr >= m_end) {
|
|
kfree(ptr);
|
|
return;
|
|
}
|
|
FreeSlab* free_slab = (FreeSlab*)ptr;
|
|
#ifdef SANITIZE_SLABS
|
|
if (slab_size() > sizeof(FreeSlab*))
|
|
memset(free_slab->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
|
|
#endif
|
|
|
|
// We want to avoid being swapped out in the middle of this
|
|
ScopedCritical critical;
|
|
FreeSlab* next_free = m_freelist.load(AK::memory_order_consume);
|
|
do {
|
|
free_slab->next = next_free;
|
|
} while (!m_freelist.compare_exchange_strong(next_free, free_slab, AK::memory_order_acq_rel));
|
|
|
|
m_num_allocated--;
|
|
}
|
|
|
|
size_t num_allocated() const { return m_num_allocated; }
|
|
size_t num_free() const { return m_slab_count - m_num_allocated; }
|
|
|
|
private:
|
|
struct FreeSlab {
|
|
FreeSlab* next;
|
|
char padding[templated_slab_size - sizeof(FreeSlab*)];
|
|
};
|
|
|
|
Atomic<FreeSlab*> m_freelist { nullptr };
|
|
Atomic<ssize_t, AK::MemoryOrder::memory_order_relaxed> m_num_allocated;
|
|
size_t m_slab_count;
|
|
void* m_base { nullptr };
|
|
void* m_end { nullptr };
|
|
|
|
static_assert(sizeof(FreeSlab) == templated_slab_size);
|
|
};
|
|
|
|
static SlabAllocator<16> s_slab_allocator_16;
|
|
static SlabAllocator<32> s_slab_allocator_32;
|
|
static SlabAllocator<64> s_slab_allocator_64;
|
|
static SlabAllocator<128> s_slab_allocator_128;
|
|
|
|
static_assert(sizeof(Region) <= s_slab_allocator_128.slab_size());
|
|
|
|
template<typename Callback>
|
|
void for_each_allocator(Callback callback)
|
|
{
|
|
callback(s_slab_allocator_16);
|
|
callback(s_slab_allocator_32);
|
|
callback(s_slab_allocator_64);
|
|
callback(s_slab_allocator_128);
|
|
}
|
|
|
|
void slab_alloc_init()
|
|
{
|
|
s_slab_allocator_16.init(128 * KiB);
|
|
s_slab_allocator_32.init(128 * KiB);
|
|
s_slab_allocator_64.init(512 * KiB);
|
|
s_slab_allocator_128.init(512 * KiB);
|
|
}
|
|
|
|
void* slab_alloc(size_t slab_size)
|
|
{
|
|
if (slab_size <= 16)
|
|
return s_slab_allocator_16.alloc();
|
|
if (slab_size <= 32)
|
|
return s_slab_allocator_32.alloc();
|
|
if (slab_size <= 64)
|
|
return s_slab_allocator_64.alloc();
|
|
if (slab_size <= 128)
|
|
return s_slab_allocator_128.alloc();
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
void slab_dealloc(void* ptr, size_t slab_size)
|
|
{
|
|
if (slab_size <= 16)
|
|
return s_slab_allocator_16.dealloc(ptr);
|
|
if (slab_size <= 32)
|
|
return s_slab_allocator_32.dealloc(ptr);
|
|
if (slab_size <= 64)
|
|
return s_slab_allocator_64.dealloc(ptr);
|
|
if (slab_size <= 128)
|
|
return s_slab_allocator_128.dealloc(ptr);
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
|
|
{
|
|
for_each_allocator([&](auto& allocator) {
|
|
auto num_allocated = allocator.num_allocated();
|
|
auto num_free = allocator.slab_count() - num_allocated;
|
|
callback(allocator.slab_size(), num_allocated, num_free);
|
|
});
|
|
}
|
|
|
|
}
|