ladybird/AK/Utf8View.cpp
DexesTTP e01f1c949f AK: Do not VERIFY on invalid code point bytes in UTF8View
The previous behavior was to always VERIFY that the UTF-8 bytes were
valid when iterating over the code points of an UTF8View. This change
makes it so we instead output the 0xFFFD 'REPLACEMENT CHARACTER'
code point when encountering invalid bytes, and keep iterating the
view after skipping one byte.

Leaving the decision to the consumer would break symmetry with the
UTF32View API, which would in turn require heavy refactoring and/or
code duplication in generic code such as the one found in
Gfx::Painter and the Shell.

To make it easier for the consumers to detect the original bytes, we
provide a new method on the iterator that returns a Span over the
data that has been decoded. This method is immediately used in the
TextNode::compute_text_for_rendering method, which previously did
this in a ad-hoc waay.

This also add tests for the new behavior in TestUtf8.cpp, as well
as reinforcements to the existing tests to check if the underlying
bytes match up with their expected values.
2021-06-03 18:28:27 +04:30

290 lines
7.9 KiB
C++

/*
* Copyright (c) 2019-2020, Sergey Bugaev <bugaevc@serenityos.org>
* Copyright (c) 2021, Max Wipfli <mail@maxwipfli.ch>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Format.h>
#include <AK/Utf8View.h>
namespace AK {
Utf8View::Utf8View(const String& string)
: m_string(string)
{
}
Utf8View::Utf8View(const StringView& string)
: m_string(string)
{
}
Utf8View::Utf8View(const char* string)
: m_string(string)
{
}
const unsigned char* Utf8View::begin_ptr() const
{
return (const unsigned char*)m_string.characters_without_null_termination();
}
const unsigned char* Utf8View::end_ptr() const
{
return begin_ptr() + m_string.length();
}
Utf8CodePointIterator Utf8View::begin() const
{
return { begin_ptr(), m_string.length() };
}
Utf8CodePointIterator Utf8View::end() const
{
return { end_ptr(), 0 };
}
Utf8CodePointIterator Utf8View::iterator_at_byte_offset(size_t byte_offset) const
{
size_t current_offset = 0;
for (auto iterator = begin(); !iterator.done(); ++iterator) {
if (current_offset >= byte_offset)
return iterator;
current_offset += iterator.underlying_code_point_length_in_bytes();
}
return end();
}
size_t Utf8View::byte_offset_of(const Utf8CodePointIterator& it) const
{
VERIFY(it.m_ptr >= begin_ptr());
VERIFY(it.m_ptr <= end_ptr());
return it.m_ptr - begin_ptr();
}
Utf8View Utf8View::substring_view(size_t byte_offset, size_t byte_length) const
{
StringView string = m_string.substring_view(byte_offset, byte_length);
return Utf8View { string };
}
Utf8View Utf8View::unicode_substring_view(size_t code_point_offset, size_t code_point_length) const
{
if (code_point_length == 0)
return {};
size_t code_point_index = 0, offset_in_bytes = 0;
for (auto iterator = begin(); !iterator.done(); ++iterator) {
if (code_point_index == code_point_offset)
offset_in_bytes = byte_offset_of(iterator);
if (code_point_index == code_point_offset + code_point_length - 1) {
size_t length_in_bytes = byte_offset_of(++iterator) - offset_in_bytes;
return substring_view(offset_in_bytes, length_in_bytes);
}
++code_point_index;
}
VERIFY_NOT_REACHED();
}
static inline bool decode_first_byte(
unsigned char byte,
size_t& out_code_point_length_in_bytes,
u32& out_value)
{
if ((byte & 128) == 0) {
out_value = byte;
out_code_point_length_in_bytes = 1;
return true;
}
if ((byte & 64) == 0) {
return false;
}
if ((byte & 32) == 0) {
out_value = byte & 31;
out_code_point_length_in_bytes = 2;
return true;
}
if ((byte & 16) == 0) {
out_value = byte & 15;
out_code_point_length_in_bytes = 3;
return true;
}
if ((byte & 8) == 0) {
out_value = byte & 7;
out_code_point_length_in_bytes = 4;
return true;
}
return false;
}
bool Utf8View::validate(size_t& valid_bytes) const
{
valid_bytes = 0;
for (auto ptr = begin_ptr(); ptr < end_ptr(); ptr++) {
size_t code_point_length_in_bytes;
u32 value;
bool first_byte_makes_sense = decode_first_byte(*ptr, code_point_length_in_bytes, value);
if (!first_byte_makes_sense)
return false;
for (size_t i = 1; i < code_point_length_in_bytes; i++) {
ptr++;
if (ptr >= end_ptr())
return false;
if (*ptr >> 6 != 2)
return false;
}
valid_bytes += code_point_length_in_bytes;
}
return true;
}
size_t Utf8View::calculate_length() const
{
size_t length = 0;
for ([[maybe_unused]] auto code_point : *this) {
++length;
}
return length;
}
bool Utf8View::starts_with(const Utf8View& start) const
{
if (start.is_empty())
return true;
if (is_empty())
return false;
if (start.length() > length())
return false;
if (begin_ptr() == start.begin_ptr())
return true;
for (auto k = begin(), l = start.begin(); l != start.end(); ++k, ++l) {
if (*k != *l)
return false;
}
return true;
}
Utf8CodePointIterator::Utf8CodePointIterator(const unsigned char* ptr, size_t length)
: m_ptr(ptr)
, m_length(length)
{
}
bool Utf8CodePointIterator::operator==(const Utf8CodePointIterator& other) const
{
return m_ptr == other.m_ptr && m_length == other.m_length;
}
bool Utf8CodePointIterator::operator!=(const Utf8CodePointIterator& other) const
{
return !(*this == other);
}
Utf8CodePointIterator& Utf8CodePointIterator::operator++()
{
VERIFY(m_length > 0);
size_t code_point_length_in_bytes = underlying_code_point_length_in_bytes();
if (code_point_length_in_bytes > m_length) {
// We don't have enough data for the next code point. Skip one character and try again.
// The rest of the code will output replacement characters as needed for any eventual extension bytes we might encounter afterwards.
dbgln("Expected code point size {} is too big for the remaining length {}. Moving forward one byte.", code_point_length_in_bytes, m_length);
m_ptr += 1;
m_length -= 1;
return *this;
}
m_ptr += code_point_length_in_bytes;
m_length -= code_point_length_in_bytes;
return *this;
}
size_t Utf8CodePointIterator::underlying_code_point_length_in_bytes() const
{
VERIFY(m_length > 0);
size_t code_point_length_in_bytes = 0;
u32 value;
bool first_byte_makes_sense = decode_first_byte(*m_ptr, code_point_length_in_bytes, value);
// If any of these tests fail, we will output a replacement character for this byte and treat it as a code point of size 1.
if (!first_byte_makes_sense)
return 1;
if (code_point_length_in_bytes > m_length)
return 1;
for (size_t offset = 1; offset < code_point_length_in_bytes; offset++) {
if (m_ptr[offset] >> 6 != 2)
return 1;
}
return code_point_length_in_bytes;
}
ReadonlyBytes Utf8CodePointIterator::underlying_code_point_bytes() const
{
return { m_ptr, underlying_code_point_length_in_bytes() };
}
u32 Utf8CodePointIterator::operator*() const
{
VERIFY(m_length > 0);
u32 code_point_value_so_far = 0;
size_t code_point_length_in_bytes = 0;
bool first_byte_makes_sense = decode_first_byte(m_ptr[0], code_point_length_in_bytes, code_point_value_so_far);
if (!first_byte_makes_sense) {
// The first byte of the code point doesn't make sense: output a replacement character
dbgln("First byte doesn't make sense, bytes: {}", StringView { (const char*)m_ptr, m_length });
return 0xFFFD;
}
if (code_point_length_in_bytes > m_length) {
// There is not enough data left for the full code point: output a replacement character
dbgln("Not enough bytes (need {}, have {}), first byte is: {:#02x}, '{}'", code_point_length_in_bytes, m_length, m_ptr[0], (const char*)m_ptr);
return 0xFFFD;
}
for (size_t offset = 1; offset < code_point_length_in_bytes; offset++) {
if (m_ptr[offset] >> 6 != 2) {
// One of the extension bytes of the code point doesn't make sense: output a replacement character
dbgln("Extension byte {:#02x} in {} position after first byte {:#02x} doesn't make sense.", m_ptr[offset], offset, m_ptr[0]);
return 0xFFFD;
}
code_point_value_so_far <<= 6;
code_point_value_so_far |= m_ptr[offset] & 63;
}
return code_point_value_so_far;
}
Optional<u32> Utf8CodePointIterator::peek(size_t offset) const
{
if (offset == 0) {
if (this->done())
return {};
return this->operator*();
}
auto new_iterator = *this;
for (size_t index = 0; index < offset; ++index) {
++new_iterator;
if (new_iterator.done())
return {};
}
return *new_iterator;
}
}