mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 15:40:19 +00:00
697c5ca5e5
The handling of page tables is very architecture specific, so belongs in the Arch directory. Some parts were already architecture-specific, however this commit moves the rest of the PageDirectory class into the Arch directory. While we're here the aarch64/PageDirectory.{h,cpp} files are updated to be aarch64 specific, by renaming some members and removing x86_64 specific code.
1473 lines
53 KiB
C++
1473 lines
53 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/Singleton.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <AK/Time.h>
|
|
#include <Kernel/API/POSIX/signal_numbers.h>
|
|
#include <Kernel/Arch/PageDirectory.h>
|
|
#include <Kernel/Arch/SmapDisabler.h>
|
|
#include <Kernel/Arch/TrapFrame.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Devices/KCOVDevice.h>
|
|
#include <Kernel/FileSystem/OpenFileDescription.h>
|
|
#include <Kernel/InterruptDisabler.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <Kernel/Memory/MemoryManager.h>
|
|
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/PerformanceEventBuffer.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/ProcessExposed.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/Thread.h>
|
|
#include <Kernel/ThreadTracer.h>
|
|
#include <Kernel/TimerQueue.h>
|
|
#include <Kernel/kstdio.h>
|
|
|
|
namespace Kernel {
|
|
|
|
static Singleton<SpinlockProtected<Thread::GlobalList, LockRank::None>> s_list;
|
|
|
|
SpinlockProtected<Thread::GlobalList, LockRank::None>& Thread::all_instances()
|
|
{
|
|
return *s_list;
|
|
}
|
|
|
|
ErrorOr<NonnullLockRefPtr<Thread>> Thread::try_create(NonnullLockRefPtr<Process> process)
|
|
{
|
|
auto kernel_stack_region = TRY(MM.allocate_kernel_region(default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow));
|
|
kernel_stack_region->set_stack(true);
|
|
|
|
auto block_timer = TRY(try_make_lock_ref_counted<Timer>());
|
|
|
|
auto name = TRY(KString::try_create(process->name()));
|
|
return adopt_nonnull_lock_ref_or_enomem(new (nothrow) Thread(move(process), move(kernel_stack_region), move(block_timer), move(name)));
|
|
}
|
|
|
|
Thread::Thread(NonnullLockRefPtr<Process> process, NonnullOwnPtr<Memory::Region> kernel_stack_region, NonnullLockRefPtr<Timer> block_timer, NonnullOwnPtr<KString> name)
|
|
: m_process(move(process))
|
|
, m_kernel_stack_region(move(kernel_stack_region))
|
|
, m_name(move(name))
|
|
, m_block_timer(move(block_timer))
|
|
{
|
|
bool is_first_thread = m_process->add_thread(*this);
|
|
if (is_first_thread) {
|
|
// First thread gets TID == PID
|
|
m_tid = m_process->pid().value();
|
|
} else {
|
|
m_tid = Process::allocate_pid().value();
|
|
}
|
|
|
|
// FIXME: Handle KString allocation failure.
|
|
m_kernel_stack_region->set_name(MUST(KString::formatted("Kernel stack (thread {})", m_tid.value())));
|
|
|
|
Thread::all_instances().with([&](auto& list) {
|
|
list.append(*this);
|
|
});
|
|
|
|
if constexpr (THREAD_DEBUG)
|
|
dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value());
|
|
|
|
reset_fpu_state();
|
|
|
|
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
|
|
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & ~(FlatPtr)0x7u;
|
|
|
|
m_process->address_space().with([&](auto& space) {
|
|
m_regs.set_initial_state(m_process->is_kernel_process(), *space, m_kernel_stack_top);
|
|
});
|
|
|
|
// We need to add another reference if we could successfully create
|
|
// all the resources needed for this thread. The reason for this is that
|
|
// we don't want to delete this thread after dropping the reference,
|
|
// it may still be running or scheduled to be run.
|
|
// The finalizer is responsible for dropping this reference once this
|
|
// thread is ready to be cleaned up.
|
|
ref();
|
|
}
|
|
|
|
Thread::~Thread()
|
|
{
|
|
VERIFY(!m_process_thread_list_node.is_in_list());
|
|
|
|
// We shouldn't be queued
|
|
VERIFY(m_runnable_priority < 0);
|
|
}
|
|
|
|
Thread::BlockResult Thread::block_impl(BlockTimeout const& timeout, Blocker& blocker)
|
|
{
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(this == Thread::current());
|
|
ScopedCritical critical;
|
|
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
// We need to hold m_block_lock so that nobody can unblock a blocker as soon
|
|
// as it is constructed and registered elsewhere
|
|
|
|
ScopeGuard finalize_guard([&] {
|
|
blocker.finalize();
|
|
});
|
|
|
|
if (!blocker.setup_blocker()) {
|
|
blocker.will_unblock_immediately_without_blocking(Blocker::UnblockImmediatelyReason::UnblockConditionAlreadyMet);
|
|
return BlockResult::NotBlocked;
|
|
}
|
|
|
|
// Relaxed semantics are fine for timeout_unblocked because we
|
|
// synchronize on the spin locks already.
|
|
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> timeout_unblocked(false);
|
|
bool timer_was_added = false;
|
|
|
|
switch (state()) {
|
|
case Thread::State::Stopped:
|
|
// It's possible that we were requested to be stopped!
|
|
break;
|
|
case Thread::State::Running:
|
|
VERIFY(m_blocker == nullptr);
|
|
break;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
m_blocker = &blocker;
|
|
|
|
if (auto& block_timeout = blocker.override_timeout(timeout); !block_timeout.is_infinite()) {
|
|
// Process::kill_all_threads may be called at any time, which will mark all
|
|
// threads to die. In that case
|
|
timer_was_added = TimerQueue::the().add_timer_without_id(*m_block_timer, block_timeout.clock_id(), block_timeout.absolute_time(), [&]() {
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(!m_block_lock.is_locked_by_current_processor());
|
|
// NOTE: this may execute on the same or any other processor!
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker && !timeout_unblocked.exchange(true))
|
|
unblock();
|
|
});
|
|
if (!timer_was_added) {
|
|
// Timeout is already in the past
|
|
blocker.will_unblock_immediately_without_blocking(Blocker::UnblockImmediatelyReason::TimeoutInThePast);
|
|
m_blocker = nullptr;
|
|
return BlockResult::InterruptedByTimeout;
|
|
}
|
|
}
|
|
|
|
blocker.begin_blocking({});
|
|
|
|
set_state(Thread::State::Blocked);
|
|
|
|
block_lock.unlock();
|
|
scheduler_lock.unlock();
|
|
|
|
dbgln_if(THREAD_DEBUG, "Thread {} blocking on {} ({}) -->", *this, &blocker, blocker.state_string());
|
|
bool did_timeout = false;
|
|
u32 lock_count_to_restore = 0;
|
|
auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
|
|
for (;;) {
|
|
// Yield to the scheduler, and wait for us to resume unblocked.
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(Processor::in_critical());
|
|
yield_without_releasing_big_lock();
|
|
VERIFY(Processor::in_critical());
|
|
|
|
SpinlockLocker block_lock2(m_block_lock);
|
|
if (m_blocker && !m_blocker->can_be_interrupted() && !m_should_die) {
|
|
block_lock2.unlock();
|
|
dbgln("Thread should not be unblocking, current state: {}", state_string());
|
|
set_state(Thread::State::Blocked);
|
|
continue;
|
|
}
|
|
// Prevent the timeout from unblocking this thread if it happens to
|
|
// be in the process of firing already
|
|
did_timeout |= timeout_unblocked.exchange(true);
|
|
if (m_blocker) {
|
|
// Remove ourselves...
|
|
VERIFY(m_blocker == &blocker);
|
|
m_blocker = nullptr;
|
|
}
|
|
dbgln_if(THREAD_DEBUG, "<-- Thread {} unblocked from {} ({})", *this, &blocker, blocker.state_string());
|
|
break;
|
|
}
|
|
|
|
// Notify the blocker that we are no longer blocking. It may need
|
|
// to clean up now while we're still holding m_lock
|
|
auto result = blocker.end_blocking({}, did_timeout); // calls was_unblocked internally
|
|
|
|
if (timer_was_added && !did_timeout) {
|
|
// Cancel the timer while not holding any locks. This allows
|
|
// the timer function to complete before we remove it
|
|
// (e.g. if it's on another processor)
|
|
TimerQueue::the().cancel_timer(*m_block_timer);
|
|
}
|
|
if (previous_locked != LockMode::Unlocked) {
|
|
// NOTE: This may trigger another call to Thread::block().
|
|
relock_process(previous_locked, lock_count_to_restore);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void Thread::block(Kernel::Mutex& lock, SpinlockLocker<Spinlock<LockRank::None>>& lock_lock, u32 lock_count)
|
|
{
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(this == Thread::current());
|
|
ScopedCritical critical;
|
|
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
|
|
switch (state()) {
|
|
case Thread::State::Stopped:
|
|
// It's possible that we were requested to be stopped!
|
|
break;
|
|
case Thread::State::Running:
|
|
VERIFY(m_blocker == nullptr);
|
|
break;
|
|
default:
|
|
dbgln("Error: Attempting to block with invalid thread state - {}", state_string());
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// If we're blocking on the big-lock we may actually be in the process
|
|
// of unblocking from another lock. If that's the case m_blocking_mutex
|
|
// is already set
|
|
auto& big_lock = process().big_lock();
|
|
VERIFY((&lock == &big_lock && m_blocking_mutex != &big_lock) || !m_blocking_mutex);
|
|
|
|
auto* previous_blocking_mutex = m_blocking_mutex;
|
|
m_blocking_mutex = &lock;
|
|
m_lock_requested_count = lock_count;
|
|
|
|
set_state(Thread::State::Blocked);
|
|
|
|
block_lock.unlock();
|
|
scheduler_lock.unlock();
|
|
|
|
lock_lock.unlock();
|
|
|
|
dbgln_if(THREAD_DEBUG, "Thread {} blocking on Mutex {}", *this, &lock);
|
|
|
|
for (;;) {
|
|
// Yield to the scheduler, and wait for us to resume unblocked.
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(Processor::in_critical());
|
|
if (&lock != &big_lock && big_lock.is_exclusively_locked_by_current_thread()) {
|
|
// We're locking another lock and already hold the big lock...
|
|
// We need to release the big lock
|
|
yield_and_release_relock_big_lock();
|
|
} else {
|
|
// By the time we've reached this another thread might have
|
|
// marked us as holding the big lock, so this call must not
|
|
// verify that we're not holding it.
|
|
yield_without_releasing_big_lock(VerifyLockNotHeld::No);
|
|
}
|
|
VERIFY(Processor::in_critical());
|
|
|
|
SpinlockLocker block_lock2(m_block_lock);
|
|
VERIFY(!m_blocking_mutex);
|
|
m_blocking_mutex = previous_blocking_mutex;
|
|
break;
|
|
}
|
|
|
|
lock_lock.lock();
|
|
}
|
|
|
|
u32 Thread::unblock_from_mutex(Kernel::Mutex& mutex)
|
|
{
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(m_blocking_mutex == &mutex);
|
|
|
|
dbgln_if(THREAD_DEBUG, "Thread {} unblocked from Mutex {}", *this, &mutex);
|
|
|
|
auto requested_count = m_lock_requested_count;
|
|
|
|
m_blocking_mutex = nullptr;
|
|
if (Thread::current() == this) {
|
|
set_state(Thread::State::Running);
|
|
return requested_count;
|
|
}
|
|
VERIFY(m_state != Thread::State::Runnable && m_state != Thread::State::Running);
|
|
set_state(Thread::State::Runnable);
|
|
return requested_count;
|
|
}
|
|
|
|
void Thread::unblock_from_blocker(Blocker& blocker)
|
|
{
|
|
auto do_unblock = [&]() {
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker != &blocker)
|
|
return;
|
|
if (!should_be_stopped() && !is_stopped())
|
|
unblock();
|
|
};
|
|
if (Processor::current_in_irq() != 0) {
|
|
Processor::deferred_call_queue([do_unblock = move(do_unblock), self = try_make_weak_ptr().release_value_but_fixme_should_propagate_errors()]() {
|
|
if (auto this_thread = self.strong_ref())
|
|
do_unblock();
|
|
});
|
|
} else {
|
|
do_unblock();
|
|
}
|
|
}
|
|
|
|
void Thread::unblock(u8 signal)
|
|
{
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(m_block_lock.is_locked_by_current_processor());
|
|
if (m_state != Thread::State::Blocked)
|
|
return;
|
|
if (m_blocking_mutex)
|
|
return;
|
|
VERIFY(m_blocker);
|
|
if (signal != 0) {
|
|
if (is_handling_page_fault()) {
|
|
// Don't let signals unblock threads that are blocked inside a page fault handler.
|
|
// This prevents threads from EINTR'ing the inode read in an inode page fault.
|
|
// FIXME: There's probably a better way to solve this.
|
|
return;
|
|
}
|
|
if (!m_blocker->can_be_interrupted() && !m_should_die)
|
|
return;
|
|
m_blocker->set_interrupted_by_signal(signal);
|
|
}
|
|
m_blocker = nullptr;
|
|
if (Thread::current() == this) {
|
|
set_state(Thread::State::Running);
|
|
return;
|
|
}
|
|
VERIFY(m_state != Thread::State::Runnable && m_state != Thread::State::Running);
|
|
set_state(Thread::State::Runnable);
|
|
}
|
|
|
|
void Thread::set_should_die()
|
|
{
|
|
if (m_should_die) {
|
|
dbgln("{} Should already die", *this);
|
|
return;
|
|
}
|
|
ScopedCritical critical;
|
|
|
|
// Remember that we should die instead of returning to
|
|
// the userspace.
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
m_should_die = true;
|
|
|
|
// NOTE: Even the current thread can technically be in "Stopped"
|
|
// state! This is the case when another thread sent a SIGSTOP to
|
|
// it while it was running and it calls e.g. exit() before
|
|
// the scheduler gets involved again.
|
|
if (is_stopped()) {
|
|
// If we were stopped, we need to briefly resume so that
|
|
// the kernel stacks can clean up. We won't ever return back
|
|
// to user mode, though
|
|
VERIFY(!process().is_stopped());
|
|
resume_from_stopped();
|
|
}
|
|
if (is_blocked()) {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker) {
|
|
// We're blocked in the kernel.
|
|
m_blocker->set_interrupted_by_death();
|
|
unblock();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Thread::die_if_needed()
|
|
{
|
|
VERIFY(Thread::current() == this);
|
|
|
|
if (!m_should_die)
|
|
return;
|
|
|
|
u32 unlock_count;
|
|
[[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
|
|
|
|
dbgln_if(THREAD_DEBUG, "Thread {} is dying", *this);
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
// It's possible that we don't reach the code after this block if the
|
|
// scheduler is invoked and FinalizerTask cleans up this thread, however
|
|
// that doesn't matter because we're trying to invoke the scheduler anyway
|
|
set_state(Thread::State::Dying);
|
|
}
|
|
|
|
ScopedCritical critical;
|
|
|
|
// Flag a context switch. Because we're in a critical section,
|
|
// Scheduler::yield will actually only mark a pending context switch
|
|
// Simply leaving the critical section would not necessarily trigger
|
|
// a switch.
|
|
Scheduler::yield();
|
|
|
|
// Now leave the critical section so that we can also trigger the
|
|
// actual context switch
|
|
Processor::clear_critical();
|
|
dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current_in_irq());
|
|
// We should never get here, but the scoped scheduler lock
|
|
// will be released by Scheduler::context_switch again
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
void Thread::exit(void* exit_value)
|
|
{
|
|
VERIFY(Thread::current() == this);
|
|
m_join_blocker_set.thread_did_exit(exit_value);
|
|
set_should_die();
|
|
u32 unlock_count;
|
|
[[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
|
|
if (m_thread_specific_range.has_value()) {
|
|
process().address_space().with([&](auto& space) {
|
|
auto* region = space->find_region_from_range(m_thread_specific_range.value());
|
|
space->deallocate_region(*region);
|
|
});
|
|
}
|
|
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
|
|
KCOVDevice::free_thread();
|
|
#endif
|
|
die_if_needed();
|
|
}
|
|
|
|
void Thread::yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held)
|
|
{
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(verify_lock_not_held == VerifyLockNotHeld::No || !process().big_lock().is_exclusively_locked_by_current_thread());
|
|
// Disable interrupts here. This ensures we don't accidentally switch contexts twice
|
|
InterruptDisabler disable;
|
|
Scheduler::yield(); // flag a switch
|
|
u32 prev_critical = Processor::clear_critical();
|
|
// NOTE: We may be on a different CPU now!
|
|
Processor::restore_critical(prev_critical);
|
|
}
|
|
|
|
void Thread::yield_and_release_relock_big_lock()
|
|
{
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
// Disable interrupts here. This ensures we don't accidentally switch contexts twice
|
|
InterruptDisabler disable;
|
|
Scheduler::yield(); // flag a switch
|
|
u32 lock_count_to_restore = 0;
|
|
auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
|
|
// NOTE: Even though we call Scheduler::yield here, unless we happen
|
|
// to be outside of a critical section, the yield will be postponed
|
|
// until leaving it in relock_process.
|
|
relock_process(previous_locked, lock_count_to_restore);
|
|
}
|
|
|
|
LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore)
|
|
{
|
|
return process().big_lock().force_unlock_exclusive_if_locked(lock_count_to_restore);
|
|
}
|
|
|
|
void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore)
|
|
{
|
|
// Clearing the critical section may trigger the context switch
|
|
// flagged by calling Scheduler::yield above.
|
|
// We have to do it this way because we intentionally
|
|
// leave the critical section here to be able to switch contexts.
|
|
u32 prev_critical = Processor::clear_critical();
|
|
|
|
// CONTEXT SWITCH HAPPENS HERE!
|
|
|
|
// NOTE: We may be on a different CPU now!
|
|
Processor::restore_critical(prev_critical);
|
|
|
|
if (previous_locked != LockMode::Unlocked) {
|
|
// We've unblocked, relock the process if needed and carry on.
|
|
process().big_lock().restore_exclusive_lock(lock_count_to_restore);
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
|
|
auto Thread::sleep(clockid_t clock_id, Time const& duration, Time* remaining_time) -> BlockResult
|
|
{
|
|
VERIFY(state() == Thread::State::Running);
|
|
return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
|
|
}
|
|
|
|
// NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
|
|
auto Thread::sleep_until(clockid_t clock_id, Time const& deadline) -> BlockResult
|
|
{
|
|
VERIFY(state() == Thread::State::Running);
|
|
return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
|
|
}
|
|
|
|
StringView Thread::state_string() const
|
|
{
|
|
switch (state()) {
|
|
case Thread::State::Invalid:
|
|
return "Invalid"sv;
|
|
case Thread::State::Runnable:
|
|
return "Runnable"sv;
|
|
case Thread::State::Running:
|
|
return "Running"sv;
|
|
case Thread::State::Dying:
|
|
return "Dying"sv;
|
|
case Thread::State::Dead:
|
|
return "Dead"sv;
|
|
case Thread::State::Stopped:
|
|
return "Stopped"sv;
|
|
case Thread::State::Blocked: {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocking_mutex)
|
|
return "Mutex"sv;
|
|
if (m_blocker)
|
|
return m_blocker->state_string();
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
PANIC("Thread::state_string(): Invalid state: {}", (int)state());
|
|
}
|
|
|
|
void Thread::finalize()
|
|
{
|
|
VERIFY(Thread::current() == g_finalizer);
|
|
VERIFY(Thread::current() != this);
|
|
|
|
#if LOCK_DEBUG
|
|
VERIFY(!m_lock.is_locked_by_current_processor());
|
|
if (lock_count() > 0) {
|
|
dbgln("Thread {} leaking {} Locks!", *this, lock_count());
|
|
SpinlockLocker list_lock(m_holding_locks_lock);
|
|
for (auto& info : m_holding_locks_list) {
|
|
auto const& location = info.lock_location;
|
|
dbgln(" - Mutex: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count);
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
#endif
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this);
|
|
set_state(Thread::State::Dead);
|
|
m_join_blocker_set.thread_finalizing();
|
|
}
|
|
|
|
if (m_dump_backtrace_on_finalization) {
|
|
auto trace_or_error = backtrace();
|
|
if (!trace_or_error.is_error()) {
|
|
auto trace = trace_or_error.release_value();
|
|
dbgln("Backtrace:");
|
|
kernelputstr(trace->characters(), trace->length());
|
|
}
|
|
}
|
|
|
|
drop_thread_count();
|
|
}
|
|
|
|
void Thread::drop_thread_count()
|
|
{
|
|
bool is_last = process().remove_thread(*this);
|
|
if (is_last)
|
|
process().finalize();
|
|
}
|
|
|
|
void Thread::finalize_dying_threads()
|
|
{
|
|
VERIFY(Thread::current() == g_finalizer);
|
|
Vector<Thread*, 32> dying_threads;
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
|
|
if (!thread.is_finalizable())
|
|
return;
|
|
auto result = dying_threads.try_append(&thread);
|
|
// We ignore allocation failures above the first 32 guaranteed thread slots, and
|
|
// just flag our future-selves to finalize these threads at a later point
|
|
if (result.is_error())
|
|
g_finalizer_has_work.store(true, AK::MemoryOrder::memory_order_release);
|
|
});
|
|
}
|
|
for (auto* thread : dying_threads) {
|
|
LockRefPtr<Process> process = thread->process();
|
|
dbgln_if(PROCESS_DEBUG, "Before finalization, {} has {} refs and its process has {}",
|
|
*thread, thread->ref_count(), thread->process().ref_count());
|
|
thread->finalize();
|
|
dbgln_if(PROCESS_DEBUG, "After finalization, {} has {} refs and its process has {}",
|
|
*thread, thread->ref_count(), thread->process().ref_count());
|
|
// This thread will never execute again, drop the running reference
|
|
// NOTE: This may not necessarily drop the last reference if anything
|
|
// else is still holding onto this thread!
|
|
thread->unref();
|
|
}
|
|
}
|
|
|
|
void Thread::update_time_scheduled(u64 current_scheduler_time, bool is_kernel, bool no_longer_running)
|
|
{
|
|
if (m_last_time_scheduled.has_value()) {
|
|
u64 delta;
|
|
if (current_scheduler_time >= m_last_time_scheduled.value())
|
|
delta = current_scheduler_time - m_last_time_scheduled.value();
|
|
else
|
|
delta = m_last_time_scheduled.value() - current_scheduler_time; // the unlikely event that the clock wrapped
|
|
if (delta != 0) {
|
|
// Add it to the global total *before* updating the thread's value!
|
|
Scheduler::add_time_scheduled(delta, is_kernel);
|
|
|
|
auto& total_time = is_kernel ? m_total_time_scheduled_kernel : m_total_time_scheduled_user;
|
|
total_time.fetch_add(delta, AK::memory_order_relaxed);
|
|
}
|
|
}
|
|
if (no_longer_running)
|
|
m_last_time_scheduled = {};
|
|
else
|
|
m_last_time_scheduled = current_scheduler_time;
|
|
}
|
|
|
|
bool Thread::tick()
|
|
{
|
|
if (previous_mode() == ExecutionMode::Kernel) {
|
|
++m_process->m_ticks_in_kernel;
|
|
++m_ticks_in_kernel;
|
|
} else {
|
|
++m_process->m_ticks_in_user;
|
|
++m_ticks_in_user;
|
|
}
|
|
--m_ticks_left;
|
|
return m_ticks_left != 0;
|
|
}
|
|
|
|
void Thread::check_dispatch_pending_signal()
|
|
{
|
|
auto result = DispatchSignalResult::Continue;
|
|
{
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
if (pending_signals_for_state() != 0) {
|
|
result = dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
|
|
if (result == DispatchSignalResult::Yield) {
|
|
yield_without_releasing_big_lock();
|
|
}
|
|
}
|
|
|
|
u32 Thread::pending_signals() const
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
return pending_signals_for_state();
|
|
}
|
|
|
|
u32 Thread::pending_signals_for_state() const
|
|
{
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
|
|
if (is_handling_page_fault())
|
|
return 0;
|
|
return m_state != State::Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
|
|
}
|
|
|
|
void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
|
|
{
|
|
VERIFY(signal < NSIG);
|
|
VERIFY(process().is_user_process());
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
|
|
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
|
|
if (should_ignore_signal(signal)) {
|
|
dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process());
|
|
return;
|
|
}
|
|
|
|
if constexpr (SIGNAL_DEBUG) {
|
|
if (sender)
|
|
dbgln("Signal: {} sent {} to {}", *sender, signal, process());
|
|
else
|
|
dbgln("Signal: Kernel send {} to {}", signal, process());
|
|
}
|
|
|
|
m_pending_signals |= 1 << (signal - 1);
|
|
m_signal_senders[signal] = sender ? sender->pid() : pid();
|
|
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
m_signal_blocker_set.unblock_all_blockers_whose_conditions_are_met();
|
|
|
|
if (!has_unmasked_pending_signals())
|
|
return;
|
|
|
|
if (m_state == Thread::State::Stopped) {
|
|
if (pending_signals_for_state() != 0) {
|
|
dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal);
|
|
resume_from_stopped();
|
|
}
|
|
} else {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal);
|
|
unblock(signal);
|
|
}
|
|
}
|
|
|
|
u32 Thread::update_signal_mask(u32 signal_mask)
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
auto previous_signal_mask = m_signal_mask;
|
|
m_signal_mask = signal_mask;
|
|
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
return previous_signal_mask;
|
|
}
|
|
|
|
u32 Thread::signal_mask() const
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
return m_signal_mask;
|
|
}
|
|
|
|
u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
auto previous_signal_mask = m_signal_mask;
|
|
if (block)
|
|
m_signal_mask |= signal_set;
|
|
else
|
|
m_signal_mask &= ~signal_set;
|
|
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
return previous_signal_mask;
|
|
}
|
|
|
|
void Thread::reset_signals_for_exec()
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
// The signal mask is preserved across execve(2).
|
|
// The pending signal set is preserved across an execve(2).
|
|
m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
|
|
m_signal_action_masks.fill({});
|
|
// A successful call to execve(2) removes any existing alternate signal stack
|
|
m_alternative_signal_stack = 0;
|
|
m_alternative_signal_stack_size = 0;
|
|
}
|
|
|
|
// Certain exceptions, such as SIGSEGV and SIGILL, put a
|
|
// thread into a state where the signal handler must be
|
|
// invoked immediately, otherwise it will continue to fault.
|
|
// This function should be used in an exception handler to
|
|
// ensure that when the thread resumes, it's executing in
|
|
// the appropriate signal handler.
|
|
void Thread::send_urgent_signal_to_self(u8 signal)
|
|
{
|
|
VERIFY(Thread::current() == this);
|
|
DispatchSignalResult result;
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
result = dispatch_signal(signal);
|
|
}
|
|
if (result == DispatchSignalResult::Terminate) {
|
|
Thread::current()->die_if_needed();
|
|
VERIFY_NOT_REACHED(); // dispatch_signal will request termination of the thread, so the above call should never return
|
|
}
|
|
if (result == DispatchSignalResult::Yield)
|
|
yield_and_release_relock_big_lock();
|
|
}
|
|
|
|
DispatchSignalResult Thread::dispatch_one_pending_signal()
|
|
{
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
|
|
if (signal_candidates == 0)
|
|
return DispatchSignalResult::Continue;
|
|
|
|
u8 signal = 1;
|
|
for (; signal < NSIG; ++signal) {
|
|
if ((signal_candidates & (1 << (signal - 1))) != 0) {
|
|
break;
|
|
}
|
|
}
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
|
|
{
|
|
VERIFY(signal != 0);
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
|
|
if ((signal_candidates & (1 << (signal - 1))) == 0)
|
|
return DispatchSignalResult::Continue;
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
enum class DefaultSignalAction {
|
|
Terminate,
|
|
Ignore,
|
|
DumpCore,
|
|
Stop,
|
|
Continue,
|
|
};
|
|
|
|
static DefaultSignalAction default_signal_action(u8 signal)
|
|
{
|
|
VERIFY(signal && signal < NSIG);
|
|
|
|
switch (signal) {
|
|
case SIGHUP:
|
|
case SIGINT:
|
|
case SIGKILL:
|
|
case SIGPIPE:
|
|
case SIGALRM:
|
|
case SIGUSR1:
|
|
case SIGUSR2:
|
|
case SIGVTALRM:
|
|
case SIGSTKFLT:
|
|
case SIGIO:
|
|
case SIGPROF:
|
|
case SIGTERM:
|
|
case SIGCANCEL:
|
|
return DefaultSignalAction::Terminate;
|
|
case SIGCHLD:
|
|
case SIGURG:
|
|
case SIGWINCH:
|
|
case SIGINFO:
|
|
return DefaultSignalAction::Ignore;
|
|
case SIGQUIT:
|
|
case SIGILL:
|
|
case SIGTRAP:
|
|
case SIGABRT:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGSEGV:
|
|
case SIGXCPU:
|
|
case SIGXFSZ:
|
|
case SIGSYS:
|
|
return DefaultSignalAction::DumpCore;
|
|
case SIGCONT:
|
|
return DefaultSignalAction::Continue;
|
|
case SIGSTOP:
|
|
case SIGTSTP:
|
|
case SIGTTIN:
|
|
case SIGTTOU:
|
|
return DefaultSignalAction::Stop;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
bool Thread::should_ignore_signal(u8 signal) const
|
|
{
|
|
VERIFY(signal < NSIG);
|
|
auto const& action = m_process->m_signal_action_data[signal];
|
|
if (action.handler_or_sigaction.is_null())
|
|
return default_signal_action(signal) == DefaultSignalAction::Ignore;
|
|
return ((sighandler_t)action.handler_or_sigaction.get() == SIG_IGN);
|
|
}
|
|
|
|
bool Thread::has_signal_handler(u8 signal) const
|
|
{
|
|
VERIFY(signal < NSIG);
|
|
auto const& action = m_process->m_signal_action_data[signal];
|
|
return !action.handler_or_sigaction.is_null();
|
|
}
|
|
|
|
bool Thread::is_signal_masked(u8 signal) const
|
|
{
|
|
VERIFY(signal < NSIG);
|
|
return (1 << (signal - 1)) & m_signal_mask;
|
|
}
|
|
|
|
bool Thread::has_alternative_signal_stack() const
|
|
{
|
|
return m_alternative_signal_stack_size != 0;
|
|
}
|
|
|
|
bool Thread::is_in_alternative_signal_stack() const
|
|
{
|
|
auto sp = get_register_dump_from_stack().userspace_sp();
|
|
return sp >= m_alternative_signal_stack && sp < m_alternative_signal_stack + m_alternative_signal_stack_size;
|
|
}
|
|
|
|
static ErrorOr<void> push_value_on_user_stack(FlatPtr& stack, FlatPtr data)
|
|
{
|
|
stack -= sizeof(FlatPtr);
|
|
return copy_to_user((FlatPtr*)stack, &data);
|
|
}
|
|
|
|
template<typename T>
|
|
static ErrorOr<void> copy_value_on_user_stack(FlatPtr& stack, T const& data)
|
|
{
|
|
stack -= sizeof(data);
|
|
return copy_to_user((RemoveCVReference<T>*)stack, &data);
|
|
}
|
|
|
|
void Thread::resume_from_stopped()
|
|
{
|
|
VERIFY(is_stopped());
|
|
VERIFY(m_stop_state != State::Invalid);
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
if (m_stop_state == Thread::State::Blocked) {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker || m_blocking_mutex) {
|
|
// Hasn't been unblocked yet
|
|
set_state(Thread::State::Blocked, 0);
|
|
} else {
|
|
// Was unblocked while stopped
|
|
set_state(Thread::State::Runnable);
|
|
}
|
|
} else {
|
|
set_state(m_stop_state, 0);
|
|
}
|
|
}
|
|
|
|
DispatchSignalResult Thread::dispatch_signal(u8 signal)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(signal > 0 && signal <= NSIG);
|
|
VERIFY(process().is_user_process());
|
|
VERIFY(this == Thread::current());
|
|
|
|
dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string());
|
|
|
|
if (m_state == Thread::State::Invalid || !is_initialized()) {
|
|
// Thread has barely been created, we need to wait until it is
|
|
// at least in Runnable state and is_initialized() returns true,
|
|
// which indicates that it is fully set up an we actually have
|
|
// a register state on the stack that we can modify
|
|
return DispatchSignalResult::Deferred;
|
|
}
|
|
|
|
auto& action = m_process->m_signal_action_data[signal];
|
|
auto sender_pid = m_signal_senders[signal];
|
|
auto sender = Process::from_pid_ignoring_jails(sender_pid);
|
|
|
|
if (!current_trap() && !action.handler_or_sigaction.is_null()) {
|
|
// We're trying dispatch a handled signal to a user process that was scheduled
|
|
// after a yielding/blocking kernel thread, we don't have a register capture of
|
|
// the thread, so just defer processing the signal to later.
|
|
return DispatchSignalResult::Deferred;
|
|
}
|
|
|
|
// Mark this signal as handled.
|
|
m_pending_signals &= ~(1 << (signal - 1));
|
|
m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
|
|
auto& process = this->process();
|
|
auto* tracer = process.tracer();
|
|
if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
|
|
dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal);
|
|
set_state(Thread::State::Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
}
|
|
|
|
if (signal == SIGCONT) {
|
|
dbgln("signal: SIGCONT resuming {}", *this);
|
|
} else {
|
|
if (tracer) {
|
|
// when a thread is traced, it should be stopped whenever it receives a signal
|
|
// the tracer is notified of this by using waitpid()
|
|
// only "pending signals" from the tracer are sent to the tracee
|
|
if (!tracer->has_pending_signal(signal)) {
|
|
dbgln("signal: {} stopping {} for tracer", signal, *this);
|
|
set_state(Thread::State::Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
}
|
|
tracer->unset_signal(signal);
|
|
}
|
|
}
|
|
|
|
auto handler_vaddr = action.handler_or_sigaction;
|
|
if (handler_vaddr.is_null()) {
|
|
switch (default_signal_action(signal)) {
|
|
case DefaultSignalAction::Stop:
|
|
set_state(Thread::State::Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
case DefaultSignalAction::DumpCore:
|
|
process.set_should_generate_coredump(true);
|
|
process.for_each_thread([](auto& thread) {
|
|
thread.set_dump_backtrace_on_finalization();
|
|
});
|
|
[[fallthrough]];
|
|
case DefaultSignalAction::Terminate:
|
|
m_process->terminate_due_to_signal(signal);
|
|
return DispatchSignalResult::Terminate;
|
|
case DefaultSignalAction::Ignore:
|
|
VERIFY_NOT_REACHED();
|
|
case DefaultSignalAction::Continue:
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
if ((sighandler_t)handler_vaddr.as_ptr() == SIG_IGN) {
|
|
dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal);
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
|
|
ScopedAddressSpaceSwitcher switcher(m_process);
|
|
|
|
m_currently_handled_signal = signal;
|
|
|
|
u32 old_signal_mask = m_signal_mask;
|
|
u32 new_signal_mask = m_signal_action_masks[signal].value_or(action.mask);
|
|
if ((action.flags & SA_NODEFER) == SA_NODEFER)
|
|
new_signal_mask &= ~(1 << (signal - 1));
|
|
else
|
|
new_signal_mask |= 1 << (signal - 1);
|
|
|
|
m_signal_mask |= new_signal_mask;
|
|
m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
|
|
bool use_alternative_stack = ((action.flags & SA_ONSTACK) != 0) && has_alternative_signal_stack() && !is_in_alternative_signal_stack();
|
|
|
|
auto setup_stack = [&](RegisterState& state) -> ErrorOr<void> {
|
|
FlatPtr stack;
|
|
if (use_alternative_stack)
|
|
stack = m_alternative_signal_stack + m_alternative_signal_stack_size;
|
|
else
|
|
stack = state.userspace_sp();
|
|
|
|
dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to IP {:p}, SP {:p}", state.ip(), state.userspace_sp());
|
|
|
|
__ucontext ucontext {
|
|
.uc_link = nullptr,
|
|
.uc_sigmask = old_signal_mask,
|
|
.uc_stack = {
|
|
.ss_sp = bit_cast<void*>(stack),
|
|
.ss_flags = action.flags & SA_ONSTACK,
|
|
.ss_size = use_alternative_stack ? m_alternative_signal_stack_size : 0,
|
|
},
|
|
.uc_mcontext = {},
|
|
};
|
|
copy_kernel_registers_into_ptrace_registers(static_cast<PtraceRegisters&>(ucontext.uc_mcontext), state);
|
|
|
|
auto fill_signal_info_for_signal = [&](siginfo& signal_info) {
|
|
if (signal == SIGCHLD) {
|
|
if (!sender) {
|
|
signal_info.si_code = CLD_EXITED;
|
|
return;
|
|
}
|
|
auto const* thread = sender->thread_list().with([](auto& list) { return list.is_empty() ? nullptr : list.first(); });
|
|
if (!thread) {
|
|
signal_info.si_code = CLD_EXITED;
|
|
return;
|
|
}
|
|
|
|
switch (thread->m_state) {
|
|
case State::Dead:
|
|
if (sender->should_generate_coredump() && sender->is_dumpable()) {
|
|
signal_info.si_code = CLD_DUMPED;
|
|
signal_info.si_status = sender->termination_signal();
|
|
return;
|
|
}
|
|
[[fallthrough]];
|
|
case State::Dying:
|
|
if (sender->termination_signal() == 0) {
|
|
signal_info.si_code = CLD_EXITED;
|
|
signal_info.si_status = sender->termination_status();
|
|
return;
|
|
}
|
|
signal_info.si_code = CLD_KILLED;
|
|
signal_info.si_status = sender->termination_signal();
|
|
return;
|
|
case State::Runnable:
|
|
case State::Running:
|
|
case State::Blocked:
|
|
signal_info.si_code = CLD_CONTINUED;
|
|
return;
|
|
case State::Stopped:
|
|
signal_info.si_code = CLD_STOPPED;
|
|
return;
|
|
case State::Invalid:
|
|
// Something is wrong, but we're just an observer.
|
|
break;
|
|
}
|
|
}
|
|
|
|
signal_info.si_code = SI_NOINFO;
|
|
};
|
|
|
|
siginfo signal_info {
|
|
.si_signo = signal,
|
|
// Filled in below by fill_signal_info_for_signal.
|
|
.si_code = 0,
|
|
// Set for SI_TIMER, we don't have the data here.
|
|
.si_errno = 0,
|
|
.si_pid = sender_pid.value(),
|
|
.si_uid = sender ? sender->credentials()->uid().value() : 0,
|
|
// Set for SIGILL, SIGFPE, SIGSEGV and SIGBUS
|
|
// FIXME: We don't generate these signals in a way that can be handled.
|
|
.si_addr = 0,
|
|
// Set for SIGCHLD.
|
|
.si_status = 0,
|
|
// Set for SIGPOLL, we don't have SIGPOLL.
|
|
.si_band = 0,
|
|
// Set for SI_QUEUE, SI_TIMER, SI_ASYNCIO and SI_MESGQ
|
|
// We do not generate any of these.
|
|
.si_value = {
|
|
.sival_int = 0,
|
|
},
|
|
};
|
|
|
|
if (action.flags & SA_SIGINFO)
|
|
fill_signal_info_for_signal(signal_info);
|
|
|
|
#if ARCH(X86_64)
|
|
constexpr static FlatPtr thread_red_zone_size = 128;
|
|
#elif ARCH(AARCH64)
|
|
constexpr static FlatPtr thread_red_zone_size = 0; // FIXME
|
|
TODO_AARCH64();
|
|
#else
|
|
# error Unknown architecture in dispatch_signal
|
|
#endif
|
|
|
|
// Align the stack to 16 bytes.
|
|
// Note that we push some elements on to the stack before the return address,
|
|
// so we need to account for this here.
|
|
constexpr static FlatPtr elements_pushed_on_stack_before_handler_address = 1; // one slot for a saved register
|
|
FlatPtr const extra_bytes_pushed_on_stack_before_handler_address = sizeof(ucontext) + sizeof(signal_info);
|
|
FlatPtr stack_alignment = (stack - elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) + extra_bytes_pushed_on_stack_before_handler_address) % 16;
|
|
// Also note that we have to skip the thread red-zone (if needed), so do that here.
|
|
stack -= thread_red_zone_size + stack_alignment;
|
|
auto start_of_stack = stack;
|
|
|
|
TRY(push_value_on_user_stack(stack, 0)); // syscall return value slot
|
|
|
|
TRY(copy_value_on_user_stack(stack, ucontext));
|
|
auto pointer_to_ucontext = stack;
|
|
|
|
TRY(copy_value_on_user_stack(stack, signal_info));
|
|
auto pointer_to_signal_info = stack;
|
|
|
|
// Make sure we actually pushed as many elements as we claimed to have pushed.
|
|
if (start_of_stack - stack != elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) + extra_bytes_pushed_on_stack_before_handler_address) {
|
|
PANIC("Stack in invalid state after signal trampoline, expected {:x} but got {:x}",
|
|
start_of_stack - elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) - extra_bytes_pushed_on_stack_before_handler_address, stack);
|
|
}
|
|
|
|
VERIFY(stack % 16 == 0);
|
|
|
|
#if ARCH(X86_64)
|
|
// Save the FPU/SSE state
|
|
TRY(copy_value_on_user_stack(stack, fpu_state()));
|
|
#endif
|
|
|
|
TRY(push_value_on_user_stack(stack, pointer_to_ucontext));
|
|
TRY(push_value_on_user_stack(stack, pointer_to_signal_info));
|
|
TRY(push_value_on_user_stack(stack, signal));
|
|
|
|
TRY(push_value_on_user_stack(stack, handler_vaddr.get()));
|
|
|
|
// We write back the adjusted stack value into the register state.
|
|
// We have to do this because we can't just pass around a reference to a packed field, as it's UB.
|
|
state.set_userspace_sp(stack);
|
|
|
|
return {};
|
|
};
|
|
|
|
// We now place the thread state on the userspace stack.
|
|
// Note that we use a RegisterState.
|
|
// Conversely, when the thread isn't blocking the RegisterState may not be
|
|
// valid (fork, exec etc) but the tss will, so we use that instead.
|
|
auto& regs = get_register_dump_from_stack();
|
|
|
|
auto result = setup_stack(regs);
|
|
if (result.is_error()) {
|
|
dbgln("Invalid stack pointer: {}", regs.userspace_sp());
|
|
process.set_should_generate_coredump(true);
|
|
process.for_each_thread([](auto& thread) {
|
|
thread.set_dump_backtrace_on_finalization();
|
|
});
|
|
m_process->terminate_due_to_signal(signal);
|
|
return DispatchSignalResult::Terminate;
|
|
}
|
|
|
|
auto signal_trampoline_addr = process.signal_trampoline().get();
|
|
regs.set_ip(signal_trampoline_addr);
|
|
|
|
#if ARCH(X86_64)
|
|
// Userspace flags might be invalid for function entry, according to SYSV ABI (section 3.2.1).
|
|
// Set them to a known-good value to avoid weird handler misbehavior.
|
|
// Only IF (and the reserved bit 1) are set.
|
|
regs.set_flags(2 | (regs.rflags & ~safe_eflags_mask));
|
|
#endif
|
|
|
|
dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:p} to deliver {}", state_string(), m_regs.ip(), signal);
|
|
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
|
|
RegisterState& Thread::get_register_dump_from_stack()
|
|
{
|
|
auto* trap = current_trap();
|
|
|
|
// We should *always* have a trap. If we don't we're probably a kernel
|
|
// thread that hasn't been preempted. If we want to support this, we
|
|
// need to capture the registers probably into m_regs and return it
|
|
VERIFY(trap);
|
|
|
|
while (trap) {
|
|
if (!trap->next_trap)
|
|
break;
|
|
trap = trap->next_trap;
|
|
}
|
|
return *trap->regs;
|
|
}
|
|
|
|
ErrorOr<NonnullLockRefPtr<Thread>> Thread::try_clone(Process& process)
|
|
{
|
|
auto clone = TRY(Thread::try_create(process));
|
|
m_signal_action_masks.span().copy_to(clone->m_signal_action_masks);
|
|
clone->m_signal_mask = m_signal_mask;
|
|
clone->m_fpu_state = m_fpu_state;
|
|
clone->m_thread_specific_data = m_thread_specific_data;
|
|
return clone;
|
|
}
|
|
|
|
void Thread::set_state(State new_state, u8 stop_signal)
|
|
{
|
|
State previous_state;
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
if (new_state == m_state)
|
|
return;
|
|
|
|
{
|
|
previous_state = m_state;
|
|
if (previous_state == Thread::State::Invalid) {
|
|
// If we were *just* created, we may have already pending signals
|
|
if (has_unmasked_pending_signals()) {
|
|
dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this);
|
|
dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
|
|
m_state = new_state;
|
|
dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string());
|
|
}
|
|
|
|
if (previous_state == Thread::State::Runnable) {
|
|
Scheduler::dequeue_runnable_thread(*this);
|
|
} else if (previous_state == Thread::State::Stopped) {
|
|
m_stop_state = State::Invalid;
|
|
auto& process = this->process();
|
|
if (process.set_stopped(false)) {
|
|
process.for_each_thread([&](auto& thread) {
|
|
if (&thread == this)
|
|
return;
|
|
if (!thread.is_stopped())
|
|
return;
|
|
dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread);
|
|
thread.resume_from_stopped();
|
|
});
|
|
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
|
|
// Tell the parent process (if any) about this change.
|
|
if (auto parent = Process::from_pid_ignoring_jails(process.ppid())) {
|
|
[[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_state == Thread::State::Runnable) {
|
|
Scheduler::enqueue_runnable_thread(*this);
|
|
Processor::smp_wake_n_idle_processors(1);
|
|
} else if (m_state == Thread::State::Stopped) {
|
|
// We don't want to restore to Running state, only Runnable!
|
|
m_stop_state = previous_state != Thread::State::Running ? previous_state : Thread::State::Runnable;
|
|
auto& process = this->process();
|
|
if (!process.set_stopped(true)) {
|
|
process.for_each_thread([&](auto& thread) {
|
|
if (&thread == this)
|
|
return;
|
|
if (thread.is_stopped())
|
|
return;
|
|
dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread);
|
|
thread.set_state(Thread::State::Stopped, stop_signal);
|
|
});
|
|
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
|
|
// Tell the parent process (if any) about this change.
|
|
if (auto parent = Process::from_pid_ignoring_jails(process.ppid())) {
|
|
[[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
|
|
}
|
|
}
|
|
} else if (m_state == Thread::State::Dying) {
|
|
VERIFY(previous_state != Thread::State::Blocked);
|
|
if (this != Thread::current() && is_finalizable()) {
|
|
// Some other thread set this thread to Dying, notify the
|
|
// finalizer right away as it can be cleaned up now
|
|
Scheduler::notify_finalizer();
|
|
}
|
|
}
|
|
}
|
|
|
|
struct RecognizedSymbol {
|
|
FlatPtr address;
|
|
KernelSymbol const* symbol { nullptr };
|
|
};
|
|
|
|
static ErrorOr<bool> symbolicate(RecognizedSymbol const& symbol, Process& process, StringBuilder& builder)
|
|
{
|
|
if (symbol.address == 0)
|
|
return false;
|
|
|
|
auto credentials = process.credentials();
|
|
bool mask_kernel_addresses = !credentials->is_superuser();
|
|
if (!symbol.symbol) {
|
|
if (!Memory::is_user_address(VirtualAddress(symbol.address))) {
|
|
TRY(builder.try_append("0xdeadc0de\n"sv));
|
|
} else {
|
|
TRY(process.address_space().with([&](auto& space) -> ErrorOr<void> {
|
|
if (auto* region = space->find_region_containing({ VirtualAddress(symbol.address), sizeof(FlatPtr) })) {
|
|
size_t offset = symbol.address - region->vaddr().get();
|
|
if (auto region_name = region->name(); !region_name.is_null() && !region_name.is_empty())
|
|
TRY(builder.try_appendff("{:p} {} + {:#x}\n", (void*)symbol.address, region_name, offset));
|
|
else
|
|
TRY(builder.try_appendff("{:p} {:p} + {:#x}\n", (void*)symbol.address, region->vaddr().as_ptr(), offset));
|
|
} else {
|
|
TRY(builder.try_appendff("{:p}\n", symbol.address));
|
|
}
|
|
return {};
|
|
}));
|
|
}
|
|
return true;
|
|
}
|
|
unsigned offset = symbol.address - symbol.symbol->address;
|
|
if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096)
|
|
TRY(builder.try_appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address)));
|
|
else
|
|
TRY(builder.try_appendff("{:p} {} + {:#x}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), symbol.symbol->name, offset));
|
|
return true;
|
|
}
|
|
|
|
ErrorOr<NonnullOwnPtr<KString>> Thread::backtrace()
|
|
{
|
|
Vector<RecognizedSymbol, 128> recognized_symbols;
|
|
|
|
auto& process = const_cast<Process&>(this->process());
|
|
auto stack_trace = TRY(Processor::capture_stack_trace(*this));
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
ScopedAddressSpaceSwitcher switcher(process);
|
|
for (auto& frame : stack_trace) {
|
|
if (Memory::is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
|
|
TRY(recognized_symbols.try_append({ frame }));
|
|
} else {
|
|
TRY(recognized_symbols.try_append({ frame, symbolicate_kernel_address(frame) }));
|
|
}
|
|
}
|
|
|
|
StringBuilder builder;
|
|
for (auto& symbol : recognized_symbols) {
|
|
if (!TRY(symbolicate(symbol, process, builder)))
|
|
break;
|
|
}
|
|
return KString::try_create(builder.string_view());
|
|
}
|
|
|
|
size_t Thread::thread_specific_region_alignment() const
|
|
{
|
|
return max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
|
|
}
|
|
|
|
size_t Thread::thread_specific_region_size() const
|
|
{
|
|
return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData);
|
|
}
|
|
|
|
ErrorOr<void> Thread::make_thread_specific_region(Badge<Process>)
|
|
{
|
|
// The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do)
|
|
if (!process().m_master_tls_region)
|
|
return {};
|
|
|
|
return process().address_space().with([&](auto& space) -> ErrorOr<void> {
|
|
auto* region = TRY(space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, thread_specific_region_size(), PAGE_SIZE, "Thread-specific"sv, PROT_READ | PROT_WRITE));
|
|
|
|
m_thread_specific_range = region->range();
|
|
|
|
SmapDisabler disabler;
|
|
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr();
|
|
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
|
|
m_thread_specific_data = VirtualAddress(thread_specific_data);
|
|
thread_specific_data->self = thread_specific_data;
|
|
|
|
if (process().m_master_tls_size != 0)
|
|
memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
|
|
|
|
return {};
|
|
});
|
|
}
|
|
|
|
LockRefPtr<Thread> Thread::from_tid(ThreadID tid)
|
|
{
|
|
return Thread::all_instances().with([&](auto& list) -> LockRefPtr<Thread> {
|
|
for (Thread& thread : list) {
|
|
if (thread.tid() == tid)
|
|
return thread;
|
|
}
|
|
return nullptr;
|
|
});
|
|
}
|
|
|
|
void Thread::reset_fpu_state()
|
|
{
|
|
memcpy(&m_fpu_state, &Processor::clean_fpu_state(), sizeof(FPUState));
|
|
}
|
|
|
|
bool Thread::should_be_stopped() const
|
|
{
|
|
return process().is_stopped();
|
|
}
|
|
|
|
void Thread::track_lock_acquire(LockRank rank)
|
|
{
|
|
// Nothing to do for locks without a rank.
|
|
if (rank == LockRank::None)
|
|
return;
|
|
|
|
if (m_lock_rank_mask != LockRank::None) {
|
|
// Verify we are only attempting to take a lock of a higher rank.
|
|
VERIFY(m_lock_rank_mask > rank);
|
|
}
|
|
|
|
m_lock_rank_mask |= rank;
|
|
}
|
|
|
|
void Thread::track_lock_release(LockRank rank)
|
|
{
|
|
// Nothing to do for locks without a rank.
|
|
if (rank == LockRank::None)
|
|
return;
|
|
|
|
// The rank value from the caller should only contain a single bit, otherwise
|
|
// we are disabling the tracking for multiple locks at once which will corrupt
|
|
// the lock tracking mask, and we will assert somewhere else.
|
|
auto rank_is_a_single_bit = [](auto rank_enum) -> bool {
|
|
auto rank = to_underlying(rank_enum);
|
|
auto rank_without_least_significant_bit = rank - 1;
|
|
return (rank & rank_without_least_significant_bit) == 0;
|
|
};
|
|
|
|
// We can't release locks out of order, as that would violate the ranking.
|
|
// This is validated by toggling the least significant bit of the mask, and
|
|
// then bit wise or-ing the rank we are trying to release with the resulting
|
|
// mask. If the rank we are releasing is truly the highest rank then the mask
|
|
// we get back will be equal to the current mask stored on the thread.
|
|
auto rank_is_in_order = [](auto mask_enum, auto rank_enum) -> bool {
|
|
auto mask = to_underlying(mask_enum);
|
|
auto rank = to_underlying(rank_enum);
|
|
auto mask_without_least_significant_bit = mask - 1;
|
|
return ((mask & mask_without_least_significant_bit) | rank) == mask;
|
|
};
|
|
|
|
VERIFY(has_flag(m_lock_rank_mask, rank));
|
|
VERIFY(rank_is_a_single_bit(rank));
|
|
VERIFY(rank_is_in_order(m_lock_rank_mask, rank));
|
|
|
|
m_lock_rank_mask ^= rank;
|
|
}
|
|
}
|
|
|
|
ErrorOr<void> AK::Formatter<Kernel::Thread>::format(FormatBuilder& builder, Kernel::Thread const& value)
|
|
{
|
|
return AK::Formatter<FormatString>::format(
|
|
builder,
|
|
"{}({}:{})"sv, value.process().name(), value.pid().value(), value.tid().value());
|
|
}
|