ladybird/AK/MemoryStream.h
2021-09-06 01:53:26 +02:00

278 lines
7.3 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/LEB128.h>
#include <AK/MemMem.h>
#include <AK/Stream.h>
#include <AK/Vector.h>
namespace AK {
class InputMemoryStream final : public InputStream {
public:
explicit InputMemoryStream(ReadonlyBytes bytes)
: m_bytes(bytes)
{
}
bool unreliable_eof() const override { return eof(); }
bool eof() const { return m_offset >= m_bytes.size(); }
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
const auto count = min(bytes.size(), remaining());
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
m_offset += count;
return count;
}
bool read_or_error(Bytes bytes) override
{
if (remaining() < bytes.size()) {
set_recoverable_error();
return false;
}
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
m_offset += bytes.size();
return true;
}
bool discard_or_error(size_t count) override
{
if (remaining() < count) {
set_recoverable_error();
return false;
}
m_offset += count;
return true;
}
void seek(size_t offset)
{
VERIFY(offset < m_bytes.size());
m_offset = offset;
}
u8 peek_or_error() const
{
if (remaining() == 0) {
set_recoverable_error();
return 0;
}
return m_bytes[m_offset];
}
template<typename ValueType>
bool read_LEB128_unsigned(ValueType& result) { return LEB128::read_unsigned(*this, result); }
template<typename ValueType>
bool read_LEB128_signed(ValueType& result) { return LEB128::read_signed(*this, result); }
ReadonlyBytes bytes() const { return m_bytes; }
size_t offset() const { return m_offset; }
size_t remaining() const { return m_bytes.size() - m_offset; }
private:
ReadonlyBytes m_bytes;
size_t m_offset { 0 };
};
class OutputMemoryStream final : public OutputStream {
public:
explicit OutputMemoryStream(Bytes bytes)
: m_bytes(bytes)
{
}
size_t write(ReadonlyBytes bytes) override
{
const auto nwritten = bytes.copy_trimmed_to(m_bytes.slice(m_offset));
m_offset += nwritten;
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
if (remaining() < bytes.size()) {
set_recoverable_error();
return false;
}
write(bytes);
return true;
}
size_t fill_to_end(u8 value)
{
const auto nwritten = m_bytes.slice(m_offset).fill(value);
m_offset += nwritten;
return nwritten;
}
bool is_end() const { return remaining() == 0; }
ReadonlyBytes bytes() const { return { data(), size() }; }
Bytes bytes() { return { data(), size() }; }
const u8* data() const { return m_bytes.data(); }
u8* data() { return m_bytes.data(); }
size_t size() const { return m_offset; }
size_t remaining() const { return m_bytes.size() - m_offset; }
void reset() { m_offset = 0; }
private:
size_t m_offset { 0 };
Bytes m_bytes;
};
class DuplexMemoryStream final : public DuplexStream {
public:
static constexpr size_t chunk_size = 4 * 1024;
bool unreliable_eof() const override { return eof(); }
bool eof() const { return m_write_offset == m_read_offset; }
bool discard_or_error(size_t count) override
{
if (m_write_offset - m_read_offset < count) {
set_recoverable_error();
return false;
}
m_read_offset += count;
try_discard_chunks();
return true;
}
Optional<size_t> offset_of(ReadonlyBytes value) const
{
// We can't directly pass m_chunks to memmem since we have a limited read/write range we want to search in.
Vector<ReadonlyBytes> spans;
auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
auto chunk_read_offset = (m_read_offset - m_base_offset) % chunk_size;
auto bytes_to_search = m_write_offset - m_read_offset;
for (; bytes_to_search > 0;) {
ReadonlyBytes span = m_chunks[chunk_index];
if (chunk_read_offset) {
span = span.slice(chunk_read_offset);
chunk_read_offset = 0;
}
if (bytes_to_search < span.size()) {
spans.append(span.slice(0, bytes_to_search));
break;
}
bytes_to_search -= span.size();
spans.append(move(span));
++chunk_index;
}
return memmem(spans.begin(), spans.end(), value);
}
size_t read_without_consuming(Bytes bytes) const
{
size_t nread = 0;
while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size;
const auto chunk_bytes = m_chunks[chunk_index].bytes().slice((m_read_offset + nread) % chunk_size).trim(m_write_offset - m_read_offset - nread);
nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
}
return nread;
}
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
const auto nread = read_without_consuming(bytes);
m_read_offset += nread;
try_discard_chunks();
return nread;
}
bool read_or_error(Bytes bytes) override
{
if (m_write_offset - m_read_offset < bytes.size()) {
set_recoverable_error();
return false;
}
return read(bytes) == bytes.size();
}
size_t write(ReadonlyBytes bytes) override
{
// FIXME: This doesn't write around chunk borders correctly?
size_t nwritten = 0;
while (bytes.size() - nwritten > 0) {
if ((m_write_offset + nwritten) % chunk_size == 0)
m_chunks.append(ByteBuffer::create_uninitialized(chunk_size).release_value()); // FIXME: Handle possible OOM situation.
nwritten += bytes.slice(nwritten).copy_trimmed_to(m_chunks.last().bytes().slice((m_write_offset + nwritten) % chunk_size));
}
m_write_offset += nwritten;
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
write(bytes);
return true;
}
ByteBuffer copy_into_contiguous_buffer() const
{
// FIXME: Handle possible OOM situation.
auto buffer = ByteBuffer::create_uninitialized(size()).release_value();
const auto nread = read_without_consuming(buffer);
VERIFY(nread == buffer.size());
return buffer;
}
size_t roffset() const { return m_read_offset; }
size_t woffset() const { return m_write_offset; }
size_t size() const { return m_write_offset - m_read_offset; }
private:
void try_discard_chunks()
{
while (m_read_offset - m_base_offset >= chunk_size) {
m_chunks.take_first();
m_base_offset += chunk_size;
}
}
Vector<ByteBuffer> m_chunks;
size_t m_write_offset { 0 };
size_t m_read_offset { 0 };
size_t m_base_offset { 0 };
};
}
using AK::DuplexMemoryStream;
using AK::InputMemoryStream;
using AK::InputStream;
using AK::OutputMemoryStream;