ladybird/AK/Vector.h
Andreas Kling d459525725 AK: Vector::data() shouldn't crash if the vector is empty.
It's up to the caller to check size() and stay within the bounds.
2019-02-05 07:12:45 +01:00

288 lines
7.3 KiB
C++

#pragma once
#include "Assertions.h"
#include "OwnPtr.h"
#include "kmalloc.h"
namespace AK {
template<typename T, typename Allocator> class Vector;
struct KmallocAllocator {
static void* allocate(size_t size) { return kmalloc(size); }
static void deallocate(void* ptr) { kfree(ptr); }
};
struct KmallocEternalAllocator {
static void* allocate(size_t size) { return kmalloc_eternal(size); }
static void deallocate(void*) { }
};
template<typename T, typename Allocator>
class VectorImpl {
public:
~VectorImpl() { }
static VectorImpl* create(size_t capacity)
{
size_t size = sizeof(VectorImpl) + sizeof(T) * capacity;
void* slot = Allocator::allocate(size);
new (slot) VectorImpl(capacity);
return (VectorImpl*)slot;
}
size_t size() const { return m_size; }
size_t capacity() const { return m_capacity; }
T& at(size_t i) { ASSERT(i < m_size); return *slot(i); }
const T& at(size_t i) const { ASSERT(i < m_size); return *slot(i); }
void remove(size_t index)
{
ASSERT(index < m_size);
at(index).~T();
for (size_t i = index + 1; i < m_size; ++i) {
new (slot(i - 1)) T(move(at(i)));
at(i).~T();
}
--m_size;
}
//private:
friend class Vector<T, Allocator>;
VectorImpl(size_t capacity) : m_capacity(capacity) { }
T* tail() { return reinterpret_cast<T*>(this + 1); }
T* slot(size_t i) { return &tail()[i]; }
const T* tail() const { return reinterpret_cast<const T*>(this + 1); }
const T* slot(size_t i) const { return &tail()[i]; }
size_t m_size { 0 };
size_t m_capacity;
};
template<typename T, typename Allocator = KmallocAllocator>
class Vector {
public:
Vector() { }
~Vector() { clear(); }
Vector(Vector&& other)
: m_impl(other.m_impl)
{
other.m_impl = nullptr;
}
Vector(const Vector& other)
{
ensure_capacity(other.size());
for (size_t i = 0; i < other.size(); ++i)
unchecked_append(other[i]);
}
Vector& operator=(Vector&& other)
{
if (this != &other) {
m_impl = other.m_impl;
other.m_impl = nullptr;
}
return *this;
}
void clear()
{
for (size_t i = 0; i < size(); ++i) {
at(i).~T();
}
Allocator::deallocate(m_impl);
m_impl = nullptr;
}
void clear_with_capacity()
{
if (!m_impl)
return;
for (size_t i = 0; i < size(); ++i)
at(i).~T();
m_impl->m_size = 0;
}
bool contains_slow(const T& value) const
{
for (size_t i = 0; i < size(); ++i) {
if (at(i) == value)
return true;
}
return false;
}
bool is_empty() const { return size() == 0; }
size_t size() const { return m_impl ? m_impl->size() : 0; }
size_t capacity() const { return m_impl ? m_impl->capacity() : 0; }
T* data() { return m_impl ? m_impl->slot(0) : nullptr; }
const T* data() const { return m_impl ? m_impl->slot(0) : nullptr; }
const T& at(size_t i) const { return m_impl->at(i); }
T& at(size_t i) { return m_impl->at(i); }
const T& operator[](size_t i) const { return at(i); }
T& operator[](size_t i) { return at(i); }
const T& first() const { return at(0); }
T& first() { return at(0); }
const T& last() const { return at(size() - 1); }
T& last() { return at(size() - 1); }
T take_last()
{
ASSERT(!is_empty());
T value = move(last());
last().~T();
--m_impl->m_size;
return value;
}
T take_first()
{
ASSERT(!is_empty());
T value = move(first());
remove(0);
return value;
}
void remove(size_t index)
{
m_impl->remove(index);
}
Vector& operator=(const Vector<T>& other)
{
if (this != &other) {
clear();
ensure_capacity(other.size());
for (const auto& v : other)
unchecked_append(v);
}
return *this;
}
void append(Vector<T>&& other)
{
Vector<T> tmp = move(other);
ensure_capacity(size() + tmp.size());
for (auto&& v : tmp) {
unchecked_append(move(v));
}
}
void unchecked_append(T&& value)
{
ASSERT((size() + 1) <= capacity());
new (m_impl->slot(m_impl->m_size)) T(move(value));
++m_impl->m_size;
}
void unchecked_append(const T& value)
{
new (m_impl->slot(m_impl->m_size)) T(value);
++m_impl->m_size;
}
void append(T&& value)
{
ensure_capacity(size() + 1);
new (m_impl->slot(m_impl->m_size)) T(move(value));
++m_impl->m_size;
}
void append(const T& value)
{
ensure_capacity(size() + 1);
new (m_impl->slot(m_impl->m_size)) T(value);
++m_impl->m_size;
}
void append(const T* values, size_t count)
{
ensure_capacity(size() + count);
for (size_t i = 0; i < count; ++i)
new (m_impl->slot(m_impl->m_size + i)) T(values[i]);
m_impl->m_size += count;
}
void ensure_capacity(size_t neededCapacity)
{
if (capacity() >= neededCapacity)
return;
size_t new_capacity = padded_capacity(neededCapacity);
auto new_impl = VectorImpl<T, Allocator>::create(new_capacity);
if (m_impl) {
new_impl->m_size = m_impl->m_size;
for (size_t i = 0; i < size(); ++i) {
new (new_impl->slot(i)) T(move(m_impl->at(i)));
m_impl->at(i).~T();
}
Allocator::deallocate(m_impl);
}
m_impl = new_impl;
}
void resize(size_t new_size)
{
ASSERT(new_size >= size());
if (!new_size)
return;
ensure_capacity(new_size);
for (size_t i = size(); i < new_size; ++i)
new (m_impl->slot(i)) T;
m_impl->m_size = new_size;
}
class Iterator {
public:
bool operator!=(const Iterator& other) { return m_index != other.m_index; }
Iterator& operator++() { ++m_index; return *this; }
T& operator*() { return m_vector[m_index]; }
private:
friend class Vector;
Iterator(Vector& vector, size_t index) : m_vector(vector), m_index(index) { }
Vector& m_vector;
size_t m_index { 0 };
};
Iterator begin() { return Iterator(*this, 0); }
Iterator end() { return Iterator(*this, size()); }
class ConstIterator {
public:
bool operator!=(const ConstIterator& other) { return m_index != other.m_index; }
ConstIterator& operator++() { ++m_index; return *this; }
const T& operator*() const { return m_vector[m_index]; }
private:
friend class Vector;
ConstIterator(const Vector& vector, const size_t index) : m_vector(vector), m_index(index) { }
const Vector& m_vector;
size_t m_index { 0 };
};
ConstIterator begin() const { return ConstIterator(*this, 0); }
ConstIterator end() const { return ConstIterator(*this, size()); }
//private:
static size_t padded_capacity(size_t capacity)
{
return max(size_t(4), capacity + (capacity / 4) + 4);
}
VectorImpl<T, Allocator>* m_impl { nullptr };
};
}
using AK::Vector;
using AK::KmallocEternalAllocator;
using AK::KmallocAllocator;