ladybird/Kernel/Syscalls/mmap.cpp
Andreas Kling d3e8eb5918 Kernel: Make file-backed memory regions remember description permissions
This allows sys$mprotect() to honor the original readable & writable
flags of the open file description as they were at the point we did the
original sys$mmap().

IIUC, this is what Dr. POSIX wants us to do:
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mprotect.html

Also, remove the bogus and racy "W^X" checking we did against mappings
based on their current inode metadata. If we want to do this, we can do
it properly. For now, it was not only racy, but also did blocking I/O
while holding a spinlock.
2022-08-24 14:57:51 +02:00

642 lines
24 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/SafeMem.h>
#include <Kernel/Arch/SmapDisabler.h>
#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/PrivateInodeVMObject.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <LibC/limits.h>
#include <LibELF/Validation.h>
namespace Kernel {
static bool should_make_executable_exception_for_dynamic_loader(bool make_readable, bool make_writable, bool make_executable, Memory::Region const& region)
{
// Normally we don't allow W -> X transitions, but we have to make an exception
// for the dynamic loader, which needs to do this after performing text relocations.
// FIXME: Investigate whether we could get rid of all text relocations entirely.
// The exception is only made if all the following criteria is fulfilled:
// The region must be RW
if (!(region.is_readable() && region.is_writable() && !region.is_executable()))
return false;
// The region wants to become RX
if (!(make_readable && !make_writable && make_executable))
return false;
// The region is backed by a file
if (!region.vmobject().is_inode())
return false;
// The file mapping is private, not shared (no relocations in a shared mapping!)
if (!region.vmobject().is_private_inode())
return false;
auto const& inode_vm = static_cast<Memory::InodeVMObject const&>(region.vmobject());
auto const& inode = inode_vm.inode();
ElfW(Ehdr) header;
auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&header);
auto result = inode.read_bytes(0, sizeof(header), buffer, nullptr);
if (result.is_error() || result.value() != sizeof(header))
return false;
// The file is a valid ELF binary
if (!ELF::validate_elf_header(header, inode.size()))
return false;
// The file is an ELF shared object
if (header.e_type != ET_DYN)
return false;
// FIXME: Are there any additional checks/validations we could do here?
return true;
}
ErrorOr<void> Process::validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, Memory::Region const* region) const
{
bool make_readable = prot & PROT_READ;
bool make_writable = prot & PROT_WRITE;
bool make_executable = prot & PROT_EXEC;
if (map_anonymous && make_executable && !(executable()->mount_flags() & MS_AXALLOWED))
return EINVAL;
if (map_stack && make_executable)
return EINVAL;
if (executable()->mount_flags() & MS_WXALLOWED)
return {};
if (make_writable && make_executable)
return EINVAL;
if (region) {
if (make_writable && region->has_been_executable())
return EINVAL;
if (make_executable && region->has_been_writable()) {
if (should_make_executable_exception_for_dynamic_loader(make_readable, make_writable, make_executable, *region)) {
return {};
} else {
return EINVAL;
};
}
}
return {};
}
ErrorOr<void> Process::validate_inode_mmap_prot(int prot, bool readable_description, bool description_writable, bool map_shared) const
{
auto credentials = this->credentials();
if ((prot & PROT_READ) && !readable_description)
return EACCES;
if (map_shared) {
// FIXME: What about readonly filesystem mounts? We cannot make a
// decision here without knowing the mount flags, so we would need to
// keep a Custody or something from mmap time.
if ((prot & PROT_WRITE) && !description_writable)
return EACCES;
}
return {};
}
ErrorOr<FlatPtr> Process::sys$mmap(Userspace<Syscall::SC_mmap_params const*> user_params)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
auto params = TRY(copy_typed_from_user(user_params));
auto addr = (FlatPtr)params.addr;
auto size = params.size;
auto alignment = params.alignment ? params.alignment : PAGE_SIZE;
auto prot = params.prot;
auto flags = params.flags;
auto fd = params.fd;
auto offset = params.offset;
if (prot & PROT_EXEC) {
TRY(require_promise(Pledge::prot_exec));
}
if (prot & MAP_FIXED || prot & MAP_FIXED_NOREPLACE) {
TRY(require_promise(Pledge::map_fixed));
}
if (alignment & ~PAGE_MASK)
return EINVAL;
size_t rounded_size = TRY(Memory::page_round_up(size));
if (!Memory::is_user_range(VirtualAddress(addr), rounded_size))
return EFAULT;
OwnPtr<KString> name;
if (params.name.characters) {
if (params.name.length > PATH_MAX)
return ENAMETOOLONG;
name = TRY(try_copy_kstring_from_user(params.name));
}
if (size == 0)
return EINVAL;
if ((FlatPtr)addr & ~PAGE_MASK)
return EINVAL;
bool map_shared = flags & MAP_SHARED;
bool map_anonymous = flags & MAP_ANONYMOUS;
bool map_private = flags & MAP_PRIVATE;
bool map_stack = flags & MAP_STACK;
bool map_fixed = flags & MAP_FIXED;
bool map_noreserve = flags & MAP_NORESERVE;
bool map_randomized = flags & MAP_RANDOMIZED;
bool map_fixed_noreplace = flags & MAP_FIXED_NOREPLACE;
if (map_shared && map_private)
return EINVAL;
if (!map_shared && !map_private)
return EINVAL;
if ((map_fixed || map_fixed_noreplace) && map_randomized)
return EINVAL;
TRY(validate_mmap_prot(prot, map_stack, map_anonymous));
if (map_stack && (!map_private || !map_anonymous))
return EINVAL;
Memory::VirtualRange requested_range { VirtualAddress { addr }, rounded_size };
if (addr && !(map_fixed || map_fixed_noreplace)) {
// If there's an address but MAP_FIXED wasn't specified, the address is just a hint.
requested_range = { {}, rounded_size };
}
Memory::Region* region = nullptr;
LockRefPtr<OpenFileDescription> description;
LockRefPtr<Memory::VMObject> vmobject;
u64 used_offset = 0;
if (map_anonymous) {
auto strategy = map_noreserve ? AllocationStrategy::None : AllocationStrategy::Reserve;
if (flags & MAP_PURGEABLE) {
vmobject = TRY(Memory::AnonymousVMObject::try_create_purgeable_with_size(rounded_size, strategy));
} else {
vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(rounded_size, strategy));
}
} else {
if (offset < 0)
return EINVAL;
used_offset = static_cast<u64>(offset);
if (static_cast<size_t>(offset) & ~PAGE_MASK)
return EINVAL;
description = TRY(open_file_description(fd));
if (description->is_directory())
return ENODEV;
// Require read access even when read protection is not requested.
if (!description->is_readable())
return EACCES;
if (map_shared) {
if ((prot & PROT_WRITE) && !description->is_writable())
return EACCES;
}
if (description->inode())
TRY(validate_inode_mmap_prot(prot, description->is_readable(), description->is_writable(), map_shared));
vmobject = TRY(description->vmobject_for_mmap(*this, requested_range, used_offset, map_shared));
}
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
// If MAP_FIXED is specified, existing mappings that intersect the requested range are removed.
if (map_fixed)
TRY(space->unmap_mmap_range(VirtualAddress(addr), size));
region = TRY(space->allocate_region_with_vmobject(
map_randomized ? Memory::RandomizeVirtualAddress::Yes : Memory::RandomizeVirtualAddress::No,
requested_range.base(),
requested_range.size(),
alignment,
vmobject.release_nonnull(),
used_offset,
{},
prot,
map_shared));
if (!region)
return ENOMEM;
if (description)
region->set_mmap(true, description->is_readable(), description->is_writable());
else
region->set_mmap(true, false, false);
if (map_shared)
region->set_shared(true);
if (map_stack)
region->set_stack(true);
if (name)
region->set_name(move(name));
PerformanceManager::add_mmap_perf_event(*this, *region);
return region->vaddr().get();
});
}
ErrorOr<FlatPtr> Process::sys$mprotect(Userspace<void*> addr, size_t size, int prot)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
if (prot & PROT_EXEC) {
TRY(require_promise(Pledge::prot_exec));
}
auto range_to_mprotect = TRY(Memory::expand_range_to_page_boundaries(addr.ptr(), size));
if (!range_to_mprotect.size())
return EINVAL;
if (!is_user_range(range_to_mprotect))
return EFAULT;
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
if (auto* whole_region = space->find_region_from_range(range_to_mprotect)) {
if (!whole_region->is_mmap())
return EPERM;
TRY(validate_mmap_prot(prot, whole_region->is_stack(), whole_region->vmobject().is_anonymous(), whole_region));
if (whole_region->access() == Memory::prot_to_region_access_flags(prot))
return 0;
if (whole_region->vmobject().is_inode())
TRY(validate_inode_mmap_prot(prot, whole_region->mmapped_from_readable(), whole_region->mmapped_from_writable(), whole_region->is_shared()));
whole_region->set_readable(prot & PROT_READ);
whole_region->set_writable(prot & PROT_WRITE);
whole_region->set_executable(prot & PROT_EXEC);
whole_region->remap();
return 0;
}
// Check if we can carve out the desired range from an existing region
if (auto* old_region = space->find_region_containing(range_to_mprotect)) {
if (!old_region->is_mmap())
return EPERM;
TRY(validate_mmap_prot(prot, old_region->is_stack(), old_region->vmobject().is_anonymous(), old_region));
if (old_region->access() == Memory::prot_to_region_access_flags(prot))
return 0;
if (old_region->vmobject().is_inode())
TRY(validate_inode_mmap_prot(prot, old_region->mmapped_from_readable(), old_region->mmapped_from_writable(), old_region->is_shared()));
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address.
auto region = space->take_region(*old_region);
region->unmap();
// This vector is the region(s) adjacent to our range.
// We need to allocate a new region for the range we wanted to change permission bits on.
auto adjacent_regions = TRY(space->try_split_region_around_range(*region, range_to_mprotect));
size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_mprotect.base().get() - region->range().base().get());
auto* new_region = TRY(space->try_allocate_split_region(*region, range_to_mprotect, new_range_offset_in_vmobject));
new_region->set_readable(prot & PROT_READ);
new_region->set_writable(prot & PROT_WRITE);
new_region->set_executable(prot & PROT_EXEC);
// Map the new regions using our page directory (they were just allocated and don't have one).
for (auto* adjacent_region : adjacent_regions) {
TRY(adjacent_region->map(space->page_directory()));
}
TRY(new_region->map(space->page_directory()));
return 0;
}
if (auto const& regions = TRY(space->find_regions_intersecting(range_to_mprotect)); regions.size()) {
size_t full_size_found = 0;
// Check that all intersecting regions are compatible.
for (auto const* region : regions) {
if (!region->is_mmap())
return EPERM;
TRY(validate_mmap_prot(prot, region->is_stack(), region->vmobject().is_anonymous(), region));
if (region->vmobject().is_inode())
TRY(validate_inode_mmap_prot(prot, region->mmapped_from_readable(), region->mmapped_from_writable(), region->is_shared()));
full_size_found += region->range().intersect(range_to_mprotect).size();
}
if (full_size_found != range_to_mprotect.size())
return ENOMEM;
// Finally, iterate over each region, either updating its access flags if the range covers it wholly,
// or carving out a new subregion with the appropriate access flags set.
for (auto* old_region : regions) {
if (old_region->access() == Memory::prot_to_region_access_flags(prot))
continue;
auto const intersection_to_mprotect = range_to_mprotect.intersect(old_region->range());
// If the region is completely covered by range, simply update the access flags
if (intersection_to_mprotect == old_region->range()) {
old_region->set_readable(prot & PROT_READ);
old_region->set_writable(prot & PROT_WRITE);
old_region->set_executable(prot & PROT_EXEC);
old_region->remap();
continue;
}
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address.
auto region = space->take_region(*old_region);
region->unmap();
// This vector is the region(s) adjacent to our range.
// We need to allocate a new region for the range we wanted to change permission bits on.
auto adjacent_regions = TRY(space->try_split_region_around_range(*old_region, intersection_to_mprotect));
// Since the range is not contained in a single region, it can only partially cover its starting and ending region,
// therefore carving out a chunk from the region will always produce a single extra region, and not two.
VERIFY(adjacent_regions.size() == 1);
size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_mprotect.base().get() - old_region->range().base().get());
auto* new_region = TRY(space->try_allocate_split_region(*region, intersection_to_mprotect, new_range_offset_in_vmobject));
new_region->set_readable(prot & PROT_READ);
new_region->set_writable(prot & PROT_WRITE);
new_region->set_executable(prot & PROT_EXEC);
// Map the new region using our page directory (they were just allocated and don't have one) if any.
if (adjacent_regions.size())
TRY(adjacent_regions[0]->map(space->page_directory()));
TRY(new_region->map(space->page_directory()));
}
return 0;
}
return EINVAL;
});
}
ErrorOr<FlatPtr> Process::sys$madvise(Userspace<void*> address, size_t size, int advice)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
auto range_to_madvise = TRY(Memory::expand_range_to_page_boundaries(address.ptr(), size));
if (!range_to_madvise.size())
return EINVAL;
if (!is_user_range(range_to_madvise))
return EFAULT;
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
auto* region = space->find_region_from_range(range_to_madvise);
if (!region)
return EINVAL;
if (!region->is_mmap())
return EPERM;
if (advice == MADV_SET_VOLATILE || advice == MADV_SET_NONVOLATILE) {
if (!region->vmobject().is_anonymous())
return EINVAL;
auto& vmobject = static_cast<Memory::AnonymousVMObject&>(region->vmobject());
if (!vmobject.is_purgeable())
return EINVAL;
bool was_purged = false;
TRY(vmobject.set_volatile(advice == MADV_SET_VOLATILE, was_purged));
return was_purged ? 1 : 0;
}
return EINVAL;
});
}
ErrorOr<FlatPtr> Process::sys$set_mmap_name(Userspace<Syscall::SC_set_mmap_name_params const*> user_params)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
auto params = TRY(copy_typed_from_user(user_params));
if (params.name.length > PATH_MAX)
return ENAMETOOLONG;
auto name = TRY(try_copy_kstring_from_user(params.name));
auto range = TRY(Memory::expand_range_to_page_boundaries((FlatPtr)params.addr, params.size));
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
auto* region = space->find_region_from_range(range);
if (!region)
return EINVAL;
if (!region->is_mmap())
return EPERM;
region->set_name(move(name));
PerformanceManager::add_mmap_perf_event(*this, *region);
return 0;
});
}
ErrorOr<FlatPtr> Process::sys$munmap(Userspace<void*> addr, size_t size)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
TRY(address_space().with([&](auto& space) {
return space->unmap_mmap_range(addr.vaddr(), size);
}));
return 0;
}
ErrorOr<FlatPtr> Process::sys$mremap(Userspace<Syscall::SC_mremap_params const*> user_params)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
auto params = TRY(copy_typed_from_user(user_params));
auto old_range = TRY(Memory::expand_range_to_page_boundaries((FlatPtr)params.old_address, params.old_size));
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
auto* old_region = space->find_region_from_range(old_range);
if (!old_region)
return EINVAL;
if (!old_region->is_mmap())
return EPERM;
if (old_region->vmobject().is_shared_inode() && params.flags & MAP_PRIVATE && !(params.flags & (MAP_ANONYMOUS | MAP_NORESERVE))) {
auto range = old_region->range();
auto old_prot = region_access_flags_to_prot(old_region->access());
auto old_offset = old_region->offset_in_vmobject();
NonnullLockRefPtr inode = static_cast<Memory::SharedInodeVMObject&>(old_region->vmobject()).inode();
auto new_vmobject = TRY(Memory::PrivateInodeVMObject::try_create_with_inode(inode));
auto old_name = old_region->take_name();
bool old_region_was_mmapped_from_readable = old_region->mmapped_from_readable();
bool old_region_was_mmapped_from_writable = old_region->mmapped_from_writable();
old_region->unmap();
space->deallocate_region(*old_region);
auto* new_region = TRY(space->allocate_region_with_vmobject(range, move(new_vmobject), old_offset, old_name->view(), old_prot, false));
new_region->set_mmap(true, old_region_was_mmapped_from_readable, old_region_was_mmapped_from_writable);
return new_region->vaddr().get();
}
dbgln("sys$mremap: Unimplemented remap request (flags={})", params.flags);
return ENOTIMPL;
});
}
ErrorOr<FlatPtr> Process::sys$allocate_tls(Userspace<char const*> initial_data, size_t size)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
TRY(require_promise(Pledge::stdio));
if (!size || size % PAGE_SIZE != 0)
return EINVAL;
if (!m_master_tls_region.is_null())
return EEXIST;
if (thread_count() != 1)
return EFAULT;
Thread* main_thread = nullptr;
bool multiple_threads = false;
for_each_thread([&main_thread, &multiple_threads](auto& thread) {
if (main_thread)
multiple_threads = true;
main_thread = &thread;
return IterationDecision::Break;
});
VERIFY(main_thread);
if (multiple_threads)
return EINVAL;
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
auto* region = TRY(space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, size, PAGE_SIZE, "Master TLS"sv, PROT_READ | PROT_WRITE));
m_master_tls_region = TRY(region->try_make_weak_ptr());
m_master_tls_size = size;
m_master_tls_alignment = PAGE_SIZE;
{
Kernel::SmapDisabler disabler;
void* fault_at;
if (!Kernel::safe_memcpy((char*)m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), (char*)initial_data.ptr(), size, fault_at))
return EFAULT;
}
TRY(main_thread->make_thread_specific_region({}));
#if ARCH(I386)
auto& tls_descriptor = Processor::current().get_gdt_entry(GDT_SELECTOR_TLS);
tls_descriptor.set_base(main_thread->thread_specific_data());
tls_descriptor.set_limit(main_thread->thread_specific_region_size());
#else
MSR fs_base_msr(MSR_FS_BASE);
fs_base_msr.set(main_thread->thread_specific_data().get());
#endif
return m_master_tls_region.unsafe_ptr()->vaddr().get();
});
}
ErrorOr<FlatPtr> Process::sys$msyscall(Userspace<void*> address)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
if (space->enforces_syscall_regions())
return EPERM;
if (!address) {
space->set_enforces_syscall_regions(true);
return 0;
}
if (!Memory::is_user_address(address.vaddr()))
return EFAULT;
auto* region = space->find_region_containing(Memory::VirtualRange { address.vaddr(), 1 });
if (!region)
return EINVAL;
if (!region->is_mmap())
return EINVAL;
region->set_syscall_region(true);
return 0;
});
}
ErrorOr<FlatPtr> Process::sys$msync(Userspace<void*> address, size_t size, int flags)
{
if ((flags & (MS_SYNC | MS_ASYNC | MS_INVALIDATE)) != flags)
return EINVAL;
bool is_async = (flags & MS_ASYNC) == MS_ASYNC;
bool is_sync = (flags & MS_SYNC) == MS_SYNC;
if (is_sync == is_async)
return EINVAL;
if (address.ptr() % PAGE_SIZE != 0)
return EINVAL;
// Note: This is not specified
auto rounded_size = TRY(Memory::page_round_up(size));
return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
auto regions = TRY(space->find_regions_intersecting(Memory::VirtualRange { address.vaddr(), rounded_size }));
// All regions from address upto address+size shall be mapped
if (regions.is_empty())
return ENOMEM;
size_t total_intersection_size = 0;
Memory::VirtualRange range_to_sync { address.vaddr(), rounded_size };
for (auto const* region : regions) {
// Region was not mapped
if (!region->is_mmap())
return ENOMEM;
total_intersection_size += region->range().intersect(range_to_sync).size();
}
// Part of the indicated range was not mapped
if (total_intersection_size != size)
return ENOMEM;
for (auto* region : regions) {
auto& vmobject = region->vmobject();
if (!vmobject.is_shared_inode())
continue;
off_t offset = region->offset_in_vmobject() + address.ptr() - region->range().base().get();
auto& inode_vmobject = static_cast<Memory::SharedInodeVMObject&>(vmobject);
// FIXME: If multiple regions belong to the same vmobject we might want to coalesce these writes
// FIXME: Handle MS_ASYNC
TRY(inode_vmobject.sync(offset / PAGE_SIZE, rounded_size / PAGE_SIZE));
// FIXME: Handle MS_INVALIDATE
}
return 0;
});
}
}