ladybird/Kernel/Syscalls/mmap.cpp
2021-07-04 01:07:28 +02:00

653 lines
22 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/Arch/x86/SmapDisabler.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/PrivateInodeVMObject.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/SharedInodeVMObject.h>
#include <LibC/limits.h>
#include <LibELF/Validation.h>
namespace Kernel {
static bool should_make_executable_exception_for_dynamic_loader(bool make_readable, bool make_writable, bool make_executable, const Region& region)
{
// Normally we don't allow W -> X transitions, but we have to make an exception
// for the dynamic loader, which needs to do this after performing text relocations.
// FIXME: Investigate whether we could get rid of all text relocations entirely.
// The exception is only made if all the following criteria is fulfilled:
// The region must be RW
if (!(region.is_readable() && region.is_writable() && !region.is_executable()))
return false;
// The region wants to become RX
if (!(make_readable && !make_writable && make_executable))
return false;
// The region is backed by a file
if (!region.vmobject().is_inode())
return false;
// The file mapping is private, not shared (no relocations in a shared mapping!)
if (!region.vmobject().is_private_inode())
return false;
auto& inode_vm = static_cast<const InodeVMObject&>(region.vmobject());
auto& inode = inode_vm.inode();
ElfW(Ehdr) header;
auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&header);
auto result = inode.read_bytes(0, sizeof(header), buffer, nullptr);
if (result.is_error() || result.value() != sizeof(header))
return false;
// The file is a valid ELF binary
if (!ELF::validate_elf_header(header, inode.size()))
return false;
// The file is an ELF shared object
if (header.e_type != ET_DYN)
return false;
// FIXME: Are there any additional checks/validations we could do here?
return true;
}
static bool validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, const Region* region = nullptr)
{
bool make_readable = prot & PROT_READ;
bool make_writable = prot & PROT_WRITE;
bool make_executable = prot & PROT_EXEC;
if (map_anonymous && make_executable)
return false;
if (make_writable && make_executable)
return false;
if (map_stack) {
if (make_executable)
return false;
if (!make_readable || !make_writable)
return false;
}
if (region) {
if (make_writable && region->has_been_executable())
return false;
if (make_executable && region->has_been_writable()) {
if (should_make_executable_exception_for_dynamic_loader(make_readable, make_writable, make_executable, *region))
return true;
return false;
}
}
return true;
}
static bool validate_inode_mmap_prot(const Process& process, int prot, const Inode& inode, bool map_shared)
{
auto metadata = inode.metadata();
if ((prot & PROT_READ) && !metadata.may_read(process))
return false;
if (map_shared) {
// FIXME: What about readonly filesystem mounts? We cannot make a
// decision here without knowing the mount flags, so we would need to
// keep a Custody or something from mmap time.
if ((prot & PROT_WRITE) && !metadata.may_write(process))
return false;
InterruptDisabler disabler;
if (auto shared_vmobject = inode.shared_vmobject()) {
if ((prot & PROT_EXEC) && shared_vmobject->writable_mappings())
return false;
if ((prot & PROT_WRITE) && shared_vmobject->executable_mappings())
return false;
}
}
return true;
}
KResultOr<FlatPtr> Process::sys$mmap(Userspace<const Syscall::SC_mmap_params*> user_params)
{
REQUIRE_PROMISE(stdio);
Syscall::SC_mmap_params params;
if (!copy_from_user(&params, user_params))
return EFAULT;
FlatPtr addr = params.addr;
auto size = params.size;
auto alignment = params.alignment;
auto prot = params.prot;
auto flags = params.flags;
auto fd = params.fd;
auto offset = params.offset;
if (prot & PROT_EXEC) {
REQUIRE_PROMISE(prot_exec);
}
if (prot & MAP_FIXED) {
REQUIRE_PROMISE(map_fixed);
}
if (alignment & ~PAGE_MASK)
return EINVAL;
if (page_round_up_would_wrap(size))
return EINVAL;
if (!is_user_range(VirtualAddress(addr), page_round_up(size)))
return EFAULT;
OwnPtr<KString> name;
if (params.name.characters) {
if (params.name.length > PATH_MAX)
return ENAMETOOLONG;
auto name_or_error = try_copy_kstring_from_user(params.name);
if (name_or_error.is_error())
return name_or_error.error();
name = name_or_error.release_value();
}
if (size == 0)
return EINVAL;
if ((FlatPtr)addr & ~PAGE_MASK)
return EINVAL;
bool map_shared = flags & MAP_SHARED;
bool map_anonymous = flags & MAP_ANONYMOUS;
bool map_private = flags & MAP_PRIVATE;
bool map_stack = flags & MAP_STACK;
bool map_fixed = flags & MAP_FIXED;
bool map_noreserve = flags & MAP_NORESERVE;
bool map_randomized = flags & MAP_RANDOMIZED;
if (map_shared && map_private)
return EINVAL;
if (!map_shared && !map_private)
return EINVAL;
if (map_fixed && map_randomized)
return EINVAL;
if (!validate_mmap_prot(prot, map_stack, map_anonymous))
return EINVAL;
if (map_stack && (!map_private || !map_anonymous))
return EINVAL;
Region* region = nullptr;
Optional<Range> range;
if (map_randomized) {
range = space().page_directory().range_allocator().allocate_randomized(page_round_up(size), alignment);
} else {
range = space().allocate_range(VirtualAddress(addr), size, alignment);
if (!range.has_value()) {
if (addr && !map_fixed) {
// If there's an address but MAP_FIXED wasn't specified, the address is just a hint.
range = space().allocate_range({}, size, alignment);
}
}
}
if (!range.has_value())
return ENOMEM;
if (map_anonymous) {
auto strategy = map_noreserve ? AllocationStrategy::None : AllocationStrategy::Reserve;
auto region_or_error = space().allocate_region(range.value(), {}, prot, strategy);
if (region_or_error.is_error())
return region_or_error.error().error();
region = region_or_error.value();
} else {
if (offset < 0)
return EINVAL;
if (static_cast<size_t>(offset) & ~PAGE_MASK)
return EINVAL;
auto description = fds().file_description(fd);
if (!description)
return EBADF;
if (description->is_directory())
return ENODEV;
// Require read access even when read protection is not requested.
if (!description->is_readable())
return EACCES;
if (map_shared) {
if ((prot & PROT_WRITE) && !description->is_writable())
return EACCES;
}
if (description->inode()) {
if (!validate_inode_mmap_prot(*this, prot, *description->inode(), map_shared))
return EACCES;
}
auto region_or_error = description->mmap(*this, range.value(), static_cast<u64>(offset), prot, map_shared);
if (region_or_error.is_error())
return region_or_error.error().error();
region = region_or_error.value();
}
if (!region)
return ENOMEM;
region->set_mmap(true);
if (map_shared)
region->set_shared(true);
if (map_stack)
region->set_stack(true);
region->set_name(move(name));
PerformanceManager::add_mmap_perf_event(*this, *region);
return region->vaddr().get();
}
static KResultOr<Range> expand_range_to_page_boundaries(FlatPtr address, size_t size)
{
if (page_round_up_would_wrap(size))
return EINVAL;
if ((address + size) < address)
return EINVAL;
if (page_round_up_would_wrap(address + size))
return EINVAL;
auto base = VirtualAddress { address }.page_base();
auto end = page_round_up(address + size);
return Range { base, end - base.get() };
}
KResultOr<FlatPtr> Process::sys$mprotect(Userspace<void*> addr, size_t size, int prot)
{
REQUIRE_PROMISE(stdio);
if (prot & PROT_EXEC) {
REQUIRE_PROMISE(prot_exec);
}
auto range_or_error = expand_range_to_page_boundaries(addr, size);
if (range_or_error.is_error())
return range_or_error.error();
auto range_to_mprotect = range_or_error.value();
if (!range_to_mprotect.size())
return EINVAL;
if (!is_user_range(range_to_mprotect))
return EFAULT;
if (auto* whole_region = space().find_region_from_range(range_to_mprotect)) {
if (!whole_region->is_mmap())
return EPERM;
if (!validate_mmap_prot(prot, whole_region->is_stack(), whole_region->vmobject().is_anonymous(), whole_region))
return EINVAL;
if (whole_region->access() == prot_to_region_access_flags(prot))
return 0;
if (whole_region->vmobject().is_inode()
&& !validate_inode_mmap_prot(*this, prot, static_cast<const InodeVMObject&>(whole_region->vmobject()).inode(), whole_region->is_shared())) {
return EACCES;
}
whole_region->set_readable(prot & PROT_READ);
whole_region->set_writable(prot & PROT_WRITE);
whole_region->set_executable(prot & PROT_EXEC);
whole_region->remap();
return 0;
}
// Check if we can carve out the desired range from an existing region
if (auto* old_region = space().find_region_containing(range_to_mprotect)) {
if (!old_region->is_mmap())
return EPERM;
if (!validate_mmap_prot(prot, old_region->is_stack(), old_region->vmobject().is_anonymous(), old_region))
return EINVAL;
if (old_region->access() == prot_to_region_access_flags(prot))
return 0;
if (old_region->vmobject().is_inode()
&& !validate_inode_mmap_prot(*this, prot, static_cast<const InodeVMObject&>(old_region->vmobject()).inode(), old_region->is_shared())) {
return EACCES;
}
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address, but dont deallocate it yet
auto region = space().take_region(*old_region);
VERIFY(region);
// Unmap the old region here, specifying that we *don't* want the VM deallocated.
region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No);
// This vector is the region(s) adjacent to our range.
// We need to allocate a new region for the range we wanted to change permission bits on.
auto adjacent_regions = space().split_region_around_range(*region, range_to_mprotect);
size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_mprotect.base().get() - region->range().base().get());
auto& new_region = space().allocate_split_region(*region, range_to_mprotect, new_range_offset_in_vmobject);
new_region.set_readable(prot & PROT_READ);
new_region.set_writable(prot & PROT_WRITE);
new_region.set_executable(prot & PROT_EXEC);
// Map the new regions using our page directory (they were just allocated and don't have one).
for (auto* adjacent_region : adjacent_regions) {
adjacent_region->map(space().page_directory());
}
new_region.map(space().page_directory());
return 0;
}
if (const auto& regions = space().find_regions_intersecting(range_to_mprotect); regions.size()) {
size_t full_size_found = 0;
// first check before doing anything
for (const auto* region : regions) {
if (!region->is_mmap())
return EPERM;
if (!validate_mmap_prot(prot, region->is_stack(), region->vmobject().is_anonymous(), region))
return EINVAL;
if (region->access() == prot_to_region_access_flags(prot))
return 0;
if (region->vmobject().is_inode()
&& !validate_inode_mmap_prot(*this, prot, static_cast<const InodeVMObject&>(region->vmobject()).inode(), region->is_shared())) {
return EACCES;
}
full_size_found += region->range().intersect(range_to_mprotect).size();
}
if (full_size_found != range_to_mprotect.size())
return ENOMEM;
// then do all the other stuff
for (auto* old_region : regions) {
const auto intersection_to_mprotect = range_to_mprotect.intersect(old_region->range());
// full sub region
if (intersection_to_mprotect == old_region->range()) {
old_region->set_readable(prot & PROT_READ);
old_region->set_writable(prot & PROT_WRITE);
old_region->set_executable(prot & PROT_EXEC);
old_region->remap();
continue;
}
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address, but dont deallocate it yet
auto region = space().take_region(*old_region);
VERIFY(region);
// Unmap the old region here, specifying that we *don't* want the VM deallocated.
region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No);
// This vector is the region(s) adjacent to our range.
// We need to allocate a new region for the range we wanted to change permission bits on.
auto adjacent_regions = space().split_region_around_range(*old_region, intersection_to_mprotect);
// there should only be one
VERIFY(adjacent_regions.size() == 1);
size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_mprotect.base().get() - old_region->range().base().get());
auto& new_region = space().allocate_split_region(*region, intersection_to_mprotect, new_range_offset_in_vmobject);
new_region.set_readable(prot & PROT_READ);
new_region.set_writable(prot & PROT_WRITE);
new_region.set_executable(prot & PROT_EXEC);
// Map the new region using our page directory (they were just allocated and don't have one) if any.
if (adjacent_regions.size())
adjacent_regions[0]->map(space().page_directory());
new_region.map(space().page_directory());
}
return 0;
}
return EINVAL;
}
KResultOr<FlatPtr> Process::sys$madvise(Userspace<void*> address, size_t size, int advice)
{
REQUIRE_PROMISE(stdio);
auto range_or_error = expand_range_to_page_boundaries(address, size);
if (range_or_error.is_error())
return range_or_error.error();
auto range_to_madvise = range_or_error.value();
if (!range_to_madvise.size())
return EINVAL;
if (!is_user_range(range_to_madvise))
return EFAULT;
auto* region = space().find_region_from_range(range_to_madvise);
if (!region)
return EINVAL;
if (!region->is_mmap())
return EPERM;
bool set_volatile = advice & MADV_SET_VOLATILE;
bool set_nonvolatile = advice & MADV_SET_NONVOLATILE;
if (set_volatile && set_nonvolatile)
return EINVAL;
if (set_volatile || set_nonvolatile) {
if (!region->vmobject().is_anonymous())
return EPERM;
bool was_purged = false;
switch (region->set_volatile(VirtualAddress(address), size, set_volatile, was_purged)) {
case Region::SetVolatileError::Success:
break;
case Region::SetVolatileError::NotPurgeable:
return EPERM;
case Region::SetVolatileError::OutOfMemory:
return ENOMEM;
}
if (set_nonvolatile)
return was_purged ? 1 : 0;
return 0;
}
if (advice & MADV_GET_VOLATILE) {
if (!region->vmobject().is_anonymous())
return EPERM;
return region->is_volatile(VirtualAddress(address), size) ? 0 : 1;
}
return EINVAL;
}
KResultOr<FlatPtr> Process::sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*> user_params)
{
REQUIRE_PROMISE(stdio);
Syscall::SC_set_mmap_name_params params;
if (!copy_from_user(&params, user_params))
return EFAULT;
if (params.name.length > PATH_MAX)
return ENAMETOOLONG;
auto name_or_error = try_copy_kstring_from_user(params.name);
if (name_or_error.is_error())
return name_or_error.error();
auto name = name_or_error.release_value();
auto range_or_error = expand_range_to_page_boundaries((FlatPtr)params.addr, params.size);
if (range_or_error.is_error())
return range_or_error.error();
auto range = range_or_error.value();
auto* region = space().find_region_from_range(range);
if (!region)
return EINVAL;
if (!region->is_mmap())
return EPERM;
region->set_name(move(name));
PerformanceManager::add_mmap_perf_event(*this, *region);
return 0;
}
KResultOr<FlatPtr> Process::sys$munmap(Userspace<void*> addr, size_t size)
{
REQUIRE_PROMISE(stdio);
auto result = space().unmap_mmap_range(VirtualAddress { addr }, size);
if (result.is_error())
return result;
return 0;
}
KResultOr<FlatPtr> Process::sys$mremap(Userspace<const Syscall::SC_mremap_params*> user_params)
{
REQUIRE_PROMISE(stdio);
Syscall::SC_mremap_params params {};
if (!copy_from_user(&params, user_params))
return EFAULT;
auto range_or_error = expand_range_to_page_boundaries((FlatPtr)params.old_address, params.old_size);
if (range_or_error.is_error())
return range_or_error.error().error();
auto old_range = range_or_error.value();
auto* old_region = space().find_region_from_range(old_range);
if (!old_region)
return EINVAL;
if (!old_region->is_mmap())
return EPERM;
if (old_region->vmobject().is_shared_inode() && params.flags & MAP_PRIVATE && !(params.flags & (MAP_ANONYMOUS | MAP_NORESERVE))) {
auto range = old_region->range();
auto old_prot = region_access_flags_to_prot(old_region->access());
auto old_offset = old_region->offset_in_vmobject();
NonnullRefPtr inode = static_cast<SharedInodeVMObject&>(old_region->vmobject()).inode();
auto new_vmobject = PrivateInodeVMObject::create_with_inode(inode);
if (!new_vmobject)
return ENOMEM;
auto old_name = old_region->take_name();
// Unmap without deallocating the VM range since we're going to reuse it.
old_region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No);
bool success = space().deallocate_region(*old_region);
VERIFY(success);
auto new_region_or_error = space().allocate_region_with_vmobject(range, new_vmobject.release_nonnull(), old_offset, old_name->view(), old_prot, false);
if (new_region_or_error.is_error())
return new_region_or_error.error().error();
auto& new_region = *new_region_or_error.value();
new_region.set_mmap(true);
return new_region.vaddr().get();
}
dbgln("sys$mremap: Unimplemented remap request (flags={})", params.flags);
return ENOTIMPL;
}
KResultOr<FlatPtr> Process::sys$allocate_tls(Userspace<const char*> initial_data, size_t size)
{
REQUIRE_PROMISE(stdio);
if (!size || size % PAGE_SIZE != 0)
return EINVAL;
if (!m_master_tls_region.is_null())
return EEXIST;
if (thread_count() != 1)
return EFAULT;
Thread* main_thread = nullptr;
bool multiple_threads = false;
for_each_thread([&main_thread, &multiple_threads](auto& thread) {
if (main_thread)
multiple_threads = true;
main_thread = &thread;
return IterationDecision::Break;
});
VERIFY(main_thread);
if (multiple_threads)
return EINVAL;
auto range = space().allocate_range({}, size);
if (!range.has_value())
return ENOMEM;
auto region_or_error = space().allocate_region(range.value(), String("Master TLS"), PROT_READ | PROT_WRITE);
if (region_or_error.is_error())
return region_or_error.error().error();
m_master_tls_region = region_or_error.value()->make_weak_ptr();
m_master_tls_size = size;
m_master_tls_alignment = PAGE_SIZE;
{
Kernel::SmapDisabler disabler;
void* fault_at;
if (!Kernel::safe_memcpy((char*)m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), (char*)initial_data.ptr(), size, fault_at))
return EFAULT;
}
auto tsr_result = main_thread->make_thread_specific_region({});
if (tsr_result.is_error())
return EFAULT;
#if ARCH(I386)
auto& tls_descriptor = Processor::current().get_gdt_entry(GDT_SELECTOR_TLS);
tls_descriptor.set_base(main_thread->thread_specific_data());
tls_descriptor.set_limit(main_thread->thread_specific_region_size());
#else
MSR fs_base_msr(MSR_FS_BASE);
fs_base_msr.set(main_thread->thread_specific_data().get());
#endif
return m_master_tls_region.unsafe_ptr()->vaddr().get();
}
KResultOr<FlatPtr> Process::sys$msyscall(Userspace<void*> address)
{
if (space().enforces_syscall_regions())
return EPERM;
if (!address) {
space().set_enforces_syscall_regions(true);
return 0;
}
if (!is_user_address(VirtualAddress { address }))
return EFAULT;
auto* region = space().find_region_containing(Range { VirtualAddress { address }, 1 });
if (!region)
return EINVAL;
if (!region->is_mmap())
return EINVAL;
region->set_syscall_region(true);
return 0;
}
}