mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-23 08:00:20 +00:00
022f7790db
This is quite nice, although I wish [[gnu::always_inline]] implied inline. Also "gnu::" is kind of a wart, but whatcha gonna do.
224 lines
5.4 KiB
C++
224 lines
5.4 KiB
C++
/*
|
|
* Really really *really* Q&D malloc() and free() implementations
|
|
* just to get going. Don't ever let anyone see this shit. :^)
|
|
*/
|
|
|
|
#include "types.h"
|
|
#include "kmalloc.h"
|
|
#include "StdLib.h"
|
|
#include "i386.h"
|
|
#include "system.h"
|
|
#include "Process.h"
|
|
#include "Scheduler.h"
|
|
#include <AK/Assertions.h>
|
|
|
|
#define SANITIZE_KMALLOC
|
|
|
|
struct [[gnu::packed]] allocation_t {
|
|
dword start;
|
|
dword nchunk;
|
|
};
|
|
|
|
#define CHUNK_SIZE 128
|
|
#define POOL_SIZE (1024 * 1024)
|
|
|
|
#define ETERNAL_BASE_PHYSICAL 0x100000
|
|
#define ETERNAL_RANGE_SIZE 0x100000
|
|
|
|
#define BASE_PHYSICAL 0x200000
|
|
#define RANGE_SIZE 0x100000
|
|
|
|
static byte alloc_map[POOL_SIZE / CHUNK_SIZE / 8];
|
|
|
|
volatile size_t sum_alloc = 0;
|
|
volatile size_t sum_free = POOL_SIZE;
|
|
volatile size_t kmalloc_sum_eternal = 0;
|
|
|
|
static byte* s_next_eternal_ptr;
|
|
static byte* s_end_of_eternal_range;
|
|
|
|
bool is_kmalloc_address(const void* ptr)
|
|
{
|
|
if (ptr >= (byte*)ETERNAL_BASE_PHYSICAL && ptr < s_next_eternal_ptr)
|
|
return true;
|
|
return (dword)ptr >= BASE_PHYSICAL && (dword)ptr <= (BASE_PHYSICAL + POOL_SIZE);
|
|
}
|
|
|
|
void kmalloc_init()
|
|
{
|
|
memset(&alloc_map, 0, sizeof(alloc_map));
|
|
memset((void *)BASE_PHYSICAL, 0, POOL_SIZE);
|
|
|
|
kmalloc_sum_eternal = 0;
|
|
sum_alloc = 0;
|
|
sum_free = POOL_SIZE;
|
|
|
|
s_next_eternal_ptr = (byte*)ETERNAL_BASE_PHYSICAL;
|
|
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
|
|
}
|
|
|
|
void* kmalloc_eternal(size_t size)
|
|
{
|
|
void* ptr = s_next_eternal_ptr;
|
|
s_next_eternal_ptr += size;
|
|
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
|
|
kmalloc_sum_eternal += size;
|
|
return ptr;
|
|
}
|
|
|
|
void* kmalloc_aligned(size_t size, size_t alignment)
|
|
{
|
|
void* ptr = kmalloc(size + alignment + sizeof(void*));
|
|
dword max_addr = (dword)ptr + alignment;
|
|
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
|
|
|
|
((void**)aligned_ptr)[-1] = ptr;
|
|
return aligned_ptr;
|
|
}
|
|
|
|
void kfree_aligned(void* ptr)
|
|
{
|
|
kfree(((void**)ptr)[-1]);
|
|
}
|
|
|
|
void* kmalloc_page_aligned(size_t size)
|
|
{
|
|
void* ptr = kmalloc_aligned(size, PAGE_SIZE);
|
|
dword d = (dword)ptr;
|
|
ASSERT((d & PAGE_MASK) == d);
|
|
return ptr;
|
|
}
|
|
|
|
void* kmalloc_impl(dword size)
|
|
{
|
|
InterruptDisabler disabler;
|
|
|
|
dword chunks_needed, chunks_here, first_chunk;
|
|
dword real_size;
|
|
dword i, j, k;
|
|
|
|
/* We need space for the allocation_t structure at the head of the block. */
|
|
real_size = size + sizeof(allocation_t);
|
|
|
|
if (sum_free < real_size) {
|
|
kprintf("%s<%u> kmalloc(): PANIC! Out of memory (sucks, dude)\nsum_free=%u, real_size=%x\n", current->name().characters(), current->pid(), sum_free, real_size);
|
|
hang();
|
|
}
|
|
|
|
chunks_needed = real_size / CHUNK_SIZE;
|
|
if( real_size % CHUNK_SIZE )
|
|
chunks_needed++;
|
|
|
|
chunks_here = 0;
|
|
first_chunk = 0;
|
|
|
|
for( i = 0; i < (POOL_SIZE / CHUNK_SIZE / 8); ++i )
|
|
{
|
|
if (alloc_map[i] == 0xff) {
|
|
// Skip over completely full bucket.
|
|
chunks_here = 0;
|
|
continue;
|
|
}
|
|
// FIXME: This scan can be optimized further with LZCNT.
|
|
for( j = 0; j < 8; ++j )
|
|
{
|
|
if( !(alloc_map[i] & (1<<j)) )
|
|
{
|
|
if( chunks_here == 0 )
|
|
{
|
|
/* Mark where potential allocation starts. */
|
|
first_chunk = i * 8 + j;
|
|
}
|
|
|
|
chunks_here++;
|
|
|
|
if( chunks_here == chunks_needed )
|
|
{
|
|
auto* a = (allocation_t *)(BASE_PHYSICAL + (first_chunk * CHUNK_SIZE));
|
|
byte *ptr = (byte *)a;
|
|
ptr += sizeof(allocation_t);
|
|
a->nchunk = chunks_needed;
|
|
a->start = first_chunk;
|
|
|
|
for( k = first_chunk; k < (first_chunk + chunks_needed); ++k )
|
|
{
|
|
alloc_map[k / 8] |= 1 << (k % 8);
|
|
}
|
|
|
|
sum_alloc += a->nchunk * CHUNK_SIZE;
|
|
sum_free -= a->nchunk * CHUNK_SIZE;
|
|
#ifdef SANITIZE_KMALLOC
|
|
memset(ptr, 0xbb, (a->nchunk * CHUNK_SIZE) - sizeof(allocation_t));
|
|
#endif
|
|
return ptr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* This is in use, so restart chunks_here counter. */
|
|
chunks_here = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
kprintf("%s<%u> kmalloc(): PANIC! Out of memory (no suitable block for size %u)\n", current->name().characters(), current->pid(), size);
|
|
hang();
|
|
}
|
|
|
|
void kfree(void *ptr)
|
|
{
|
|
if( !ptr )
|
|
return;
|
|
|
|
InterruptDisabler disabler;
|
|
|
|
allocation_t *a = (allocation_t *)((((byte *)ptr) - sizeof(allocation_t)));
|
|
|
|
#if 0
|
|
dword hdr = (dword)a;
|
|
dword mhdr = hdr & ~0x7;
|
|
kprintf("hdr / mhdr %p / %p\n", hdr, mhdr);
|
|
ASSERT(hdr == mhdr);
|
|
#endif
|
|
|
|
for (dword k = a->start; k < (a->start + a->nchunk); ++k) {
|
|
alloc_map[k / 8] &= ~(1 << (k % 8));
|
|
}
|
|
|
|
sum_alloc -= a->nchunk * CHUNK_SIZE;
|
|
sum_free += a->nchunk * CHUNK_SIZE;
|
|
|
|
#ifdef SANITIZE_KMALLOC
|
|
memset(a, 0xaa, a->nchunk * CHUNK_SIZE);
|
|
#endif
|
|
}
|
|
|
|
void* operator new(size_t size)
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void* operator new[](size_t size)
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void operator delete(void* ptr)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete[](void* ptr)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete(void* ptr, unsigned int)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete[](void* ptr, unsigned int)
|
|
{
|
|
return kfree(ptr);
|
|
}
|