ladybird/AK/Variant.h
2021-05-13 19:44:32 +01:00

387 lines
12 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/BitCast.h>
#include <AK/StdLibExtras.h>
namespace AK::Detail {
template<typename T, typename IndexType, IndexType InitialIndex, typename... InTypes>
struct VariantIndexOf {
static_assert(DependentFalse<T, IndexType, InTypes...>, "Invalid VariantIndex instantiated");
};
template<typename T, typename IndexType, IndexType InitialIndex, typename InType, typename... RestOfInTypes>
struct VariantIndexOf<T, IndexType, InitialIndex, InType, RestOfInTypes...> {
consteval IndexType operator()()
{
if constexpr (IsSame<T, InType>)
return InitialIndex;
else
return VariantIndexOf<T, IndexType, InitialIndex + 1, RestOfInTypes...> {}();
}
};
template<typename T, typename IndexType, IndexType InitialIndex>
struct VariantIndexOf<T, IndexType, InitialIndex> {
consteval IndexType operator()() { return InitialIndex; }
};
template<typename T, typename IndexType, typename... Ts>
consteval IndexType index_of()
{
return VariantIndexOf<T, IndexType, 0, Ts...> {}();
}
template<typename IndexType, IndexType InitialIndex, typename... Ts>
struct Variant;
template<typename IndexType, IndexType InitialIndex, typename F, typename... Ts>
struct Variant<IndexType, InitialIndex, F, Ts...> {
static constexpr auto current_index = VariantIndexOf<F, IndexType, InitialIndex, F, Ts...> {}();
static void delete_(IndexType id, void* data)
{
if (id == current_index)
bit_cast<F*>(data)->~F();
else
Variant<IndexType, InitialIndex + 1, Ts...>::delete_(id, data);
}
static void move_(IndexType old_id, void* old_data, void* new_data)
{
if (old_id == current_index)
new (new_data) F(move(*bit_cast<F*>(old_data)));
else
Variant<IndexType, InitialIndex + 1, Ts...>::move_(old_id, old_data, new_data);
}
static void copy_(IndexType old_id, const void* old_data, void* new_data)
{
if (old_id == current_index)
new (new_data) F(*bit_cast<F*>(old_data));
else
Variant<IndexType, InitialIndex + 1, Ts...>::copy_(old_id, old_data, new_data);
}
template<typename Visitor>
static void visit_(IndexType id, void* data, Visitor&& visitor)
{
if (id == current_index)
visitor(*bit_cast<F*>(data));
else
Variant<IndexType, InitialIndex + 1, Ts...>::visit_(id, data, forward<Visitor>(visitor));
}
template<typename Visitor>
static void visit_(IndexType id, const void* data, Visitor&& visitor)
{
if (id == current_index)
visitor(*bit_cast<const F*>(data));
else
Variant<IndexType, InitialIndex + 1, Ts...>::visit_(id, data, forward<Visitor>(visitor));
}
};
template<typename IndexType, IndexType InitialIndex>
struct Variant<IndexType, InitialIndex> {
static void delete_(IndexType, void*) { }
static void move_(IndexType, void*, void*) { }
static void copy_(IndexType, const void*, void*) { }
template<typename Visitor>
static void visit_(IndexType, void*, Visitor&&) { }
template<typename Visitor>
static void visit_(IndexType, const void*, Visitor&&) { }
};
struct VariantNoClearTag {
explicit VariantNoClearTag() = default;
};
struct VariantConstructTag {
explicit VariantConstructTag() = default;
};
template<typename T, typename Base>
struct VariantConstructors {
VariantConstructors(T&& t)
{
internal_cast().template set<T>(forward<T>(t), VariantNoClearTag {});
}
VariantConstructors() { }
Base& operator=(const T& value)
{
Base variant { value };
internal_cast() = move(variant);
return internal_cast();
}
Base& operator=(T&& value)
{
Base variant { move(value) };
internal_cast() = move(variant);
return internal_cast();
}
private:
[[nodiscard]] Base& internal_cast()
{
// Warning: Internal type shenanigans - VariantsConstrutors<T, Base> <- Base
// Not the other way around, so be _really_ careful not to cause issues.
return *reinterpret_cast<Base*>(this);
}
};
// Type list deduplication
// Since this is a big template mess, each template is commented with how and why it works.
struct ParameterPackTag {
};
// Pack<Ts...> is just a way to pass around the type parameter pack Ts
template<typename... Ts>
struct ParameterPack : ParameterPackTag {
};
// Blank<T> is a unique replacement for T, if T is a duplicate type.
template<typename T>
struct Blank {
};
template<typename A, typename P>
inline constexpr bool IsTypeInPack = false;
// IsTypeInPack<T, Pack<Ts...>> will just return whether 'T' exists in 'Ts'.
template<typename T, typename... Ts>
inline constexpr bool IsTypeInPack<T, ParameterPack<Ts...>> = (IsSame<T, Ts> || ...);
// Replaces T with Blank<T> if it exists in Qs.
template<typename T, typename... Qs>
using BlankIfDuplicate = Conditional<(IsTypeInPack<T, Qs> || ...), Blank<T>, T>;
template<unsigned I, typename...>
struct InheritFromUniqueEntries;
// InheritFromUniqueEntries will inherit from both Qs and Ts, but only scan entries going *forwards*
// that is to say, if it's scanning from index I in Qs, it won't scan for duplicates for entries before I
// as that has already been checked before.
// This makes sure that the search is linear in time (like the 'merge' step of merge sort).
template<unsigned I, typename... Ts, unsigned... Js, typename... Qs>
struct InheritFromUniqueEntries<I, ParameterPack<Ts...>, IndexSequence<Js...>, Qs...>
: public BlankIfDuplicate<Ts, Conditional<Js <= I, ParameterPack<>, Qs>...>... {
using BlankIfDuplicate<Ts, Conditional<Js <= I, ParameterPack<>, Qs>...>::BlankIfDuplicate...;
};
template<typename...>
struct InheritFromPacks;
// InheritFromPacks will attempt to 'merge' the pack 'Ps' with *itself*, but skip the duplicate entries
// (via InheritFromUniqueEntries).
template<unsigned... Is, typename... Ps>
struct InheritFromPacks<IndexSequence<Is...>, Ps...>
: public InheritFromUniqueEntries<Is, Ps, IndexSequence<Is...>, Ps...>... {
using InheritFromUniqueEntries<Is, Ps, IndexSequence<Is...>, Ps...>::InheritFromUniqueEntries...;
};
// Just a nice wrapper around InheritFromPacks, which will wrap any parameter packs in ParameterPack (unless it alread is one).
template<typename... Ps>
using MergeAndDeduplicatePacks = InheritFromPacks<MakeIndexSequence<sizeof...(Ps)>, Conditional<IsBaseOf<ParameterPackTag, Ps>, Ps, ParameterPack<Ps>>...>;
}
namespace AK {
struct Empty {
};
template<typename... Ts>
struct Variant
: public Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...> {
private:
using IndexType = Conditional<sizeof...(Ts) < 255, u8, size_t>; // Note: size+1 reserved for internal value checks
static constexpr IndexType invalid_index = sizeof...(Ts);
template<typename T>
static constexpr IndexType index_of() { return Detail::index_of<T, IndexType, Ts...>(); }
public:
template<typename... NewTs>
friend struct Variant;
Variant(const Variant& old)
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(old.m_index)
{
Helper::copy_(old.m_index, old.m_data, m_data);
}
// Note: A moved-from variant emulates the state of the object it contains
// so if a variant containing an int is moved from, it will still contain that int
// and if a variant with a nontrivial move ctor is moved from, it may or may not be valid
// but it will still contain the "moved-from" state of the object it previously contained.
Variant(Variant&& old)
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(old.m_index)
{
Helper::move_(old.m_index, old.m_data, m_data);
}
~Variant()
{
Helper::delete_(m_index, m_data);
}
Variant& operator=(const Variant& other)
{
m_index = other.m_index;
Helper::copy_(other.m_index, other.m_data, m_data);
return *this;
}
Variant& operator=(Variant&& other)
{
m_index = other.m_index;
Helper::move_(other.m_index, other.m_data, m_data);
return *this;
}
using Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>::MergeAndDeduplicatePacks;
template<typename T>
void set(T&& t) requires(index_of<T>() != invalid_index)
{
using StrippedT = RemoveCV<RemoveReference<T>>;
constexpr auto new_index = index_of<StrippedT>();
Helper::delete_(m_index, m_data);
new (m_data) StrippedT(forward<T>(t));
m_index = new_index;
}
template<typename T>
void set(T&& t, Detail::VariantNoClearTag)
{
using StrippedT = RemoveCV<RemoveReference<T>>;
constexpr auto new_index = index_of<StrippedT>();
new (m_data) StrippedT(forward<T>(t));
m_index = new_index;
}
template<typename T>
T* get_pointer()
{
if (index_of<T>() == m_index)
return bit_cast<T*>(&m_data);
return nullptr;
}
template<typename T>
[[gnu::noinline]] T& get()
{
VERIFY(has<T>());
return *bit_cast<T*>(&m_data);
}
template<typename T>
[[gnu::noinline]] const T* get_pointer() const
{
if (index_of<T>() == m_index)
return bit_cast<const T*>(&m_data);
return nullptr;
}
template<typename T>
[[gnu::noinline]] const T& get() const
{
VERIFY(has<T>());
return *bit_cast<const T*>(&m_data);
}
template<typename T>
[[nodiscard]] bool has() const
{
return index_of<T>() == m_index;
}
template<typename... Fs>
void visit(Fs&&... functions)
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
Helper::visit_(m_index, m_data, visitor);
}
template<typename... Fs>
void visit(Fs&&... functions) const
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
Helper::visit_(m_index, m_data, visitor);
}
template<typename... NewTs>
Variant<NewTs...> downcast() &&
{
Variant<NewTs...> instance { Variant<NewTs...>::invalid_index, Detail::VariantConstructTag {} };
visit([&](auto& value) {
if constexpr (Variant<NewTs...>::template can_contain<RemoveCV<RemoveReference<decltype(value)>>>())
instance.set(move(value), Detail::VariantNoClearTag {});
});
VERIFY(instance.m_index != instance.invalid_index);
return instance;
}
template<typename... NewTs>
Variant<NewTs...> downcast() &
{
Variant<NewTs...> instance { Variant<NewTs...>::invalid_index, Detail::VariantConstructTag {} };
visit([&](const auto& value) {
if constexpr (Variant<NewTs...>::template can_contain<RemoveCV<RemoveReference<decltype(value)>>>())
instance.set(value, Detail::VariantNoClearTag {});
});
VERIFY(instance.m_index != instance.invalid_index);
return instance;
}
template<typename T>
static constexpr bool can_contain()
{
return index_of<T>() != invalid_index;
}
private:
static constexpr auto data_size = integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, sizeof(Ts)...>()).max();
static constexpr auto data_alignment = integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, alignof(Ts)...>()).max();
using Helper = Detail::Variant<IndexType, 0, Ts...>;
explicit Variant(IndexType index, Detail::VariantConstructTag)
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(index)
{
}
template<typename... Fs>
struct Visitor : Fs... {
Visitor(Fs&&... args)
: Fs(args)...
{
}
using Fs::operator()...;
};
alignas(data_alignment) u8 m_data[data_size];
// Note: Make sure not to default-initialize!
// VariantConstructors::VariantConstructors(T) will set this to the correct value
// So default-constructing to anything will leave the first initialization with that value instead of the correct one.
IndexType m_index;
};
}
using AK::Empty;
using AK::Variant;