ladybird/Libraries/LibCore/EventLoopImplementationUnix.cpp

731 lines
24 KiB
C++

/*
* Copyright (c) 2023, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BinaryHeap.h>
#include <AK/Singleton.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <AK/WeakPtr.h>
#include <LibCore/Event.h>
#include <LibCore/EventLoopImplementationUnix.h>
#include <LibCore/EventReceiver.h>
#include <LibCore/Notifier.h>
#include <LibCore/Socket.h>
#include <LibCore/System.h>
#include <LibCore/ThreadEventQueue.h>
#include <pthread.h>
#include <sys/select.h>
#include <unistd.h>
namespace Core {
namespace {
struct ThreadData;
class TimeoutSet;
HashMap<pthread_t, ThreadData*> s_thread_data;
pthread_key_t s_thread_key;
static pthread_rwlock_t s_thread_data_lock_impl;
static pthread_rwlock_t* s_thread_data_lock = nullptr;
thread_local pthread_t s_thread_id;
thread_local OwnPtr<ThreadData> s_this_thread_data;
short notification_type_to_poll_events(NotificationType type)
{
short events = 0;
if (has_flag(type, NotificationType::Read))
events |= POLLIN;
if (has_flag(type, NotificationType::Write))
events |= POLLOUT;
return events;
}
bool has_flag(int value, int flag)
{
return (value & flag) == flag;
}
class EventLoopTimeout {
public:
static constexpr ssize_t INVALID_INDEX = NumericLimits<ssize_t>::max();
EventLoopTimeout() { }
virtual ~EventLoopTimeout() = default;
virtual void fire(TimeoutSet& timeout_set, MonotonicTime time) = 0;
MonotonicTime fire_time() const { return m_fire_time; }
void absolutize(Badge<TimeoutSet>, MonotonicTime current_time)
{
m_fire_time = current_time + m_duration;
}
ssize_t& index(Badge<TimeoutSet>) { return m_index; }
void set_index(Badge<TimeoutSet>, ssize_t index) { m_index = index; }
bool is_scheduled() const { return m_index != INVALID_INDEX; }
protected:
union {
AK::Duration m_duration;
MonotonicTime m_fire_time;
};
private:
ssize_t m_index = INVALID_INDEX;
};
class TimeoutSet {
public:
TimeoutSet() = default;
Optional<MonotonicTime> next_timer_expiration()
{
if (!m_heap.is_empty()) {
return m_heap.peek_min()->fire_time();
} else {
return {};
}
}
void absolutize_relative_timeouts(MonotonicTime current_time)
{
for (auto timeout : m_scheduled_timeouts) {
timeout->absolutize({}, current_time);
m_heap.insert(timeout);
}
m_scheduled_timeouts.clear();
}
size_t fire_expired(MonotonicTime current_time)
{
size_t fired_count = 0;
while (!m_heap.is_empty()) {
auto& timeout = *m_heap.peek_min();
if (timeout.fire_time() <= current_time) {
++fired_count;
m_heap.pop_min();
timeout.set_index({}, EventLoopTimeout::INVALID_INDEX);
timeout.fire(*this, current_time);
} else {
break;
}
}
return fired_count;
}
void schedule_relative(EventLoopTimeout* timeout)
{
timeout->set_index({}, -1 - static_cast<ssize_t>(m_scheduled_timeouts.size()));
m_scheduled_timeouts.append(timeout);
}
void schedule_absolute(EventLoopTimeout* timeout)
{
m_heap.insert(timeout);
}
void unschedule(EventLoopTimeout* timeout)
{
if (timeout->index({}) < 0) {
size_t i = -1 - timeout->index({});
size_t j = m_scheduled_timeouts.size() - 1;
VERIFY(m_scheduled_timeouts[i] == timeout);
swap(m_scheduled_timeouts[i], m_scheduled_timeouts[j]);
swap(m_scheduled_timeouts[i]->index({}), m_scheduled_timeouts[j]->index({}));
(void)m_scheduled_timeouts.take_last();
} else {
m_heap.pop(timeout->index({}));
}
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
}
void clear()
{
for (auto* timeout : m_heap.nodes_in_arbitrary_order())
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
m_heap.clear();
for (auto* timeout : m_scheduled_timeouts)
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
m_scheduled_timeouts.clear();
}
private:
IntrusiveBinaryHeap<
EventLoopTimeout*,
decltype([](EventLoopTimeout* a, EventLoopTimeout* b) {
return a->fire_time() < b->fire_time();
}),
decltype([](EventLoopTimeout* timeout, size_t index) {
timeout->set_index({}, static_cast<ssize_t>(index));
}),
8>
m_heap;
Vector<EventLoopTimeout*, 8> m_scheduled_timeouts;
};
class EventLoopTimer final : public EventLoopTimeout {
public:
EventLoopTimer() = default;
void reload(MonotonicTime const& now) { m_fire_time = now + interval; }
virtual void fire(TimeoutSet& timeout_set, MonotonicTime current_time) override
{
auto strong_owner = owner.strong_ref();
if (!strong_owner)
return;
if (should_reload) {
MonotonicTime next_fire_time = m_fire_time + interval;
if (next_fire_time <= current_time) {
next_fire_time = current_time + interval;
}
m_fire_time = next_fire_time;
if (next_fire_time != current_time) {
timeout_set.schedule_absolute(this);
} else {
// NOTE: Unfortunately we need to treat timeouts with the zero interval in a
// special way. TimeoutSet::schedule_absolute for them will result in an
// infinite loop. TimeoutSet::schedule_relative, on the other hand, will do a
// correct thing of scheduling them for the next iteration of the loop.
m_duration = {};
timeout_set.schedule_relative(this);
}
}
// FIXME: While TimerShouldFireWhenNotVisible::Yes prevents the timer callback from being
// called, it doesn't allow event loop to sleep since it needs to constantly check if
// is_visible_for_timer_purposes changed. A better solution will be to unregister a
// timer and register it back again when needed. This also has an added benefit of
// making fire_when_not_visible and is_visible_for_timer_purposes obsolete.
if (fire_when_not_visible == TimerShouldFireWhenNotVisible::Yes || strong_owner->is_visible_for_timer_purposes())
ThreadEventQueue::current().post_event(*strong_owner, make<TimerEvent>());
}
AK::Duration interval;
bool should_reload { false };
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
WeakPtr<EventReceiver> owner;
pthread_t owner_thread { 0 };
Atomic<bool> is_being_deleted { false };
};
struct ThreadData {
static ThreadData& the()
{
if (!s_thread_data_lock) {
pthread_rwlock_init(&s_thread_data_lock_impl, nullptr);
s_thread_data_lock = &s_thread_data_lock_impl;
pthread_key_create(&s_thread_key, [](void*) {
s_this_thread_data.clear();
});
}
if (s_thread_id == 0)
s_thread_id = pthread_self();
ThreadData* data = nullptr;
if (!s_this_thread_data) {
data = new ThreadData;
s_this_thread_data = adopt_own(*data);
pthread_rwlock_wrlock(&*s_thread_data_lock);
s_thread_data.set(s_thread_id, s_this_thread_data.ptr());
pthread_rwlock_unlock(&*s_thread_data_lock);
} else {
data = s_this_thread_data.ptr();
}
return *data;
}
static ThreadData* for_thread(pthread_t thread_id)
{
pthread_rwlock_rdlock(&*s_thread_data_lock);
auto result = s_thread_data.get(thread_id).value_or(nullptr);
pthread_rwlock_unlock(&*s_thread_data_lock);
return result;
}
ThreadData()
{
pid = getpid();
initialize_wake_pipe();
}
~ThreadData()
{
pthread_rwlock_wrlock(&*s_thread_data_lock);
s_thread_data.remove(s_thread_id);
pthread_rwlock_unlock(&*s_thread_data_lock);
}
void initialize_wake_pipe()
{
if (wake_pipe_fds[0] != -1)
close(wake_pipe_fds[0]);
if (wake_pipe_fds[1] != -1)
close(wake_pipe_fds[1]);
auto result = Core::System::pipe2(O_CLOEXEC);
if (result.is_error()) {
warnln("\033[31;1mFailed to create event loop pipe:\033[0m {}", result.error());
VERIFY_NOT_REACHED();
}
wake_pipe_fds = result.release_value();
// The wake pipe informs us of POSIX signals as well as manual calls to wake()
VERIFY(poll_fds.size() == 0);
poll_fds.append({ .fd = wake_pipe_fds[0], .events = POLLIN, .revents = 0 });
notifier_by_index.append(nullptr);
}
// Each thread has its own timers, notifiers and a wake pipe.
TimeoutSet timeouts;
Vector<pollfd> poll_fds;
HashMap<Notifier*, size_t> notifier_by_ptr;
Vector<Notifier*> notifier_by_index;
// The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
// wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
Array<int, 2> wake_pipe_fds { -1, -1 };
pid_t pid { 0 };
};
}
EventLoopImplementationUnix::EventLoopImplementationUnix()
: m_wake_pipe_fds(ThreadData::the().wake_pipe_fds)
{
}
EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;
int EventLoopImplementationUnix::exec()
{
for (;;) {
if (m_exit_requested)
return m_exit_code;
pump(PumpMode::WaitForEvents);
}
VERIFY_NOT_REACHED();
}
size_t EventLoopImplementationUnix::pump(PumpMode mode)
{
static_cast<EventLoopManagerUnix&>(EventLoopManager::the()).wait_for_events(mode);
return ThreadEventQueue::current().process();
}
void EventLoopImplementationUnix::quit(int code)
{
m_exit_requested = true;
m_exit_code = code;
}
void EventLoopImplementationUnix::unquit()
{
m_exit_requested = false;
m_exit_code = 0;
}
bool EventLoopImplementationUnix::was_exit_requested() const
{
return m_exit_requested;
}
void EventLoopImplementationUnix::post_event(EventReceiver& receiver, NonnullOwnPtr<Event>&& event)
{
m_thread_event_queue.post_event(receiver, move(event));
if (&m_thread_event_queue != &ThreadEventQueue::current())
wake();
}
void EventLoopImplementationUnix::wake()
{
int wake_event = 0;
MUST(Core::System::write(m_wake_pipe_fds[1], { &wake_event, sizeof(wake_event) }));
}
void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mode)
{
auto& thread_data = ThreadData::the();
retry:
bool has_pending_events = ThreadEventQueue::current().has_pending_events();
auto time_at_iteration_start = MonotonicTime::now_coarse();
thread_data.timeouts.absolutize_relative_timeouts(time_at_iteration_start);
// Figure out how long to wait at maximum.
// This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
int timeout = 0;
bool should_wait_forever = false;
if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
auto next_timer_expiration = thread_data.timeouts.next_timer_expiration();
if (next_timer_expiration.has_value()) {
auto computed_timeout = next_timer_expiration.value() - time_at_iteration_start;
if (computed_timeout.is_negative())
computed_timeout = AK::Duration::zero();
i64 true_timeout = computed_timeout.to_milliseconds();
timeout = static_cast<i32>(min<i64>(AK::NumericLimits<i32>::max(), true_timeout));
} else {
should_wait_forever = true;
}
}
try_select_again:
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
ErrorOr<int> error_or_marked_fd_count = System::poll(thread_data.poll_fds, should_wait_forever ? -1 : timeout);
auto time_after_poll = MonotonicTime::now_coarse();
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
if (error_or_marked_fd_count.is_error()) {
if (error_or_marked_fd_count.error().code() == EINTR)
goto try_select_again;
dbgln("EventLoopImplementationUnix::wait_for_events: {}", error_or_marked_fd_count.error());
VERIFY_NOT_REACHED();
}
// We woke up due to a call to wake() or a POSIX signal.
// Handle signals and see whether we need to handle events as well.
if (has_flag(thread_data.poll_fds[0].revents, POLLIN)) {
int wake_events[8];
ssize_t nread;
// We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
// but we get interrupted. Therefore, just retry while we were interrupted.
do {
errno = 0;
nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
if (nread == 0)
break;
} while (nread < 0 && errno == EINTR);
if (nread < 0) {
perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
VERIFY_NOT_REACHED();
}
VERIFY(nread > 0);
bool wake_requested = false;
int event_count = nread / sizeof(wake_events[0]);
for (int i = 0; i < event_count; i++) {
if (wake_events[i] != 0)
dispatch_signal(wake_events[i]);
else
wake_requested = true;
}
if (!wake_requested && nread == sizeof(wake_events))
goto retry;
}
if (error_or_marked_fd_count.value() != 0) {
// Handle file system notifiers by making them normal events.
for (size_t i = 1; i < thread_data.poll_fds.size(); ++i) {
// FIXME: Make the check work under Android, pehaps use ALooper
#ifdef AK_OS_ANDROID
auto& notifier = *thread_data.notifier_by_index[i];
ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>(notifier.fd(), notifier.type()));
#else
auto& revents = thread_data.poll_fds[i].revents;
auto& notifier = *thread_data.notifier_by_index[i];
NotificationType type = NotificationType::None;
if (has_flag(revents, POLLIN))
type |= NotificationType::Read;
if (has_flag(revents, POLLOUT))
type |= NotificationType::Write;
if (has_flag(revents, POLLHUP))
type |= NotificationType::HangUp;
if (has_flag(revents, POLLERR))
type |= NotificationType::Error;
type &= notifier.type();
if (type != NotificationType::None)
ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>(notifier.fd(), type));
#endif
}
}
// Handle expired timers.
thread_data.timeouts.fire_expired(time_after_poll);
}
class SignalHandlers : public RefCounted<SignalHandlers> {
AK_MAKE_NONCOPYABLE(SignalHandlers);
AK_MAKE_NONMOVABLE(SignalHandlers);
public:
SignalHandlers(int signal_number, void (*handle_signal)(int));
~SignalHandlers();
void dispatch();
int add(Function<void(int)>&& handler);
bool remove(int handler_id);
bool is_empty() const
{
if (m_calling_handlers) {
for (auto& handler : m_handlers_pending) {
if (handler.value)
return false; // an add is pending
}
}
return m_handlers.is_empty();
}
bool have(int handler_id) const
{
if (m_calling_handlers) {
auto it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // a deletion is pending
}
}
return m_handlers.contains(handler_id);
}
int m_signal_number;
void (*m_original_handler)(int); // TODO: can't use sighandler_t?
HashMap<int, Function<void(int)>> m_handlers;
HashMap<int, Function<void(int)>> m_handlers_pending;
bool m_calling_handlers { false };
};
struct SignalHandlersInfo {
HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
int next_signal_id { 0 };
};
static Singleton<SignalHandlersInfo> s_signals;
template<bool create_if_null = true>
inline SignalHandlersInfo* signals_info()
{
return s_signals.ptr();
}
void EventLoopManagerUnix::dispatch_signal(int signal_number)
{
auto& info = *signals_info();
auto handlers = info.signal_handlers.find(signal_number);
if (handlers != info.signal_handlers.end()) {
// Make sure we bump the ref count while dispatching the handlers!
// This allows a handler to unregister/register while the handlers
// are being called!
auto handler = handlers->value;
handler->dispatch();
}
}
void EventLoopImplementationUnix::notify_forked_and_in_child()
{
auto& thread_data = ThreadData::the();
thread_data.timeouts.clear();
thread_data.poll_fds.clear();
thread_data.notifier_by_ptr.clear();
thread_data.notifier_by_index.clear();
thread_data.initialize_wake_pipe();
if (auto* info = signals_info<false>()) {
info->signal_handlers.clear();
info->next_signal_id = 0;
}
thread_data.pid = getpid();
}
SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
: m_signal_number(signal_number)
, m_original_handler(signal(signal_number, handle_signal))
{
}
SignalHandlers::~SignalHandlers()
{
signal(m_signal_number, m_original_handler);
}
void SignalHandlers::dispatch()
{
TemporaryChange change(m_calling_handlers, true);
for (auto& handler : m_handlers)
handler.value(m_signal_number);
if (!m_handlers_pending.is_empty()) {
// Apply pending adds/removes
for (auto& handler : m_handlers_pending) {
if (handler.value) {
auto result = m_handlers.set(handler.key, move(handler.value));
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
} else {
m_handlers.remove(handler.key);
}
}
m_handlers_pending.clear();
}
}
int SignalHandlers::add(Function<void(int)>&& handler)
{
int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
if (m_calling_handlers)
m_handlers_pending.set(id, move(handler));
else
m_handlers.set(id, move(handler));
return id;
}
bool SignalHandlers::remove(int handler_id)
{
VERIFY(handler_id != 0);
if (m_calling_handlers) {
auto it = m_handlers.find(handler_id);
if (it != m_handlers.end()) {
// Mark pending remove
m_handlers_pending.set(handler_id, {});
return true;
}
it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // already was marked as deleted
it->value = nullptr;
return true;
}
return false;
}
return m_handlers.remove(handler_id);
}
void EventLoopManagerUnix::handle_signal(int signal_number)
{
VERIFY(signal_number != 0);
auto& thread_data = ThreadData::the();
// We MUST check if the current pid still matches, because there
// is a window between fork() and exec() where a signal delivered
// to our fork could be inadvertently routed to the parent process!
if (getpid() == thread_data.pid) {
int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
if (nwritten < 0) {
perror("EventLoopImplementationUnix::register_signal: write");
VERIFY_NOT_REACHED();
}
} else {
// We're a fork who received a signal, reset thread_data.pid.
thread_data.pid = getpid();
}
}
int EventLoopManagerUnix::register_signal(int signal_number, Function<void(int)> handler)
{
VERIFY(signal_number != 0);
auto& info = *signals_info();
auto handlers = info.signal_handlers.find(signal_number);
if (handlers == info.signal_handlers.end()) {
auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopManagerUnix::handle_signal));
auto handler_id = signal_handlers->add(move(handler));
info.signal_handlers.set(signal_number, move(signal_handlers));
return handler_id;
} else {
return handlers->value->add(move(handler));
}
}
void EventLoopManagerUnix::unregister_signal(int handler_id)
{
VERIFY(handler_id != 0);
int remove_signal_number = 0;
auto& info = *signals_info();
for (auto& h : info.signal_handlers) {
auto& handlers = *h.value;
if (handlers.remove(handler_id)) {
if (handlers.is_empty())
remove_signal_number = handlers.m_signal_number;
break;
}
}
if (remove_signal_number != 0)
info.signal_handlers.remove(remove_signal_number);
}
intptr_t EventLoopManagerUnix::register_timer(EventReceiver& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
{
VERIFY(milliseconds >= 0);
auto& thread_data = ThreadData::the();
auto timer = new EventLoopTimer;
timer->owner_thread = s_thread_id;
timer->owner = object;
timer->interval = AK::Duration::from_milliseconds(milliseconds);
timer->reload(MonotonicTime::now_coarse());
timer->should_reload = should_reload;
timer->fire_when_not_visible = fire_when_not_visible;
thread_data.timeouts.schedule_absolute(timer);
return bit_cast<intptr_t>(timer);
}
void EventLoopManagerUnix::unregister_timer(intptr_t timer_id)
{
auto* timer = bit_cast<EventLoopTimer*>(timer_id);
auto thread_data_ptr = ThreadData::for_thread(timer->owner_thread);
if (!thread_data_ptr)
return;
auto& thread_data = *thread_data_ptr;
auto expected = false;
if (timer->is_being_deleted.compare_exchange_strong(expected, true, AK::MemoryOrder::memory_order_acq_rel)) {
if (timer->is_scheduled())
thread_data.timeouts.unschedule(timer);
delete timer;
}
}
void EventLoopManagerUnix::register_notifier(Notifier& notifier)
{
auto& thread_data = ThreadData::the();
thread_data.notifier_by_ptr.set(&notifier, thread_data.poll_fds.size());
thread_data.notifier_by_index.append(&notifier);
thread_data.poll_fds.append({
.fd = notifier.fd(),
.events = notification_type_to_poll_events(notifier.type()),
.revents = 0,
});
notifier.set_owner_thread(s_thread_id);
}
void EventLoopManagerUnix::unregister_notifier(Notifier& notifier)
{
auto thread_data_ptr = ThreadData::for_thread(notifier.owner_thread());
if (!thread_data_ptr)
return;
auto& thread_data = *thread_data_ptr;
auto it = thread_data.notifier_by_ptr.find(&notifier);
VERIFY(it != thread_data.notifier_by_ptr.end());
size_t notifier_index = it->value;
thread_data.notifier_by_ptr.remove(it);
if (notifier_index + 1 != thread_data.poll_fds.size()) {
swap(thread_data.poll_fds[notifier_index], thread_data.poll_fds.last());
swap(thread_data.notifier_by_index[notifier_index], thread_data.notifier_by_index.last());
thread_data.notifier_by_ptr.set(thread_data.notifier_by_index[notifier_index], notifier_index);
}
thread_data.poll_fds.take_last();
thread_data.notifier_by_index.take_last();
}
void EventLoopManagerUnix::did_post_event()
{
}
EventLoopManagerUnix::~EventLoopManagerUnix() = default;
NonnullOwnPtr<EventLoopImplementation> EventLoopManagerUnix::make_implementation()
{
return adopt_own(*new EventLoopImplementationUnix);
}
}