mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-26 17:40:27 +00:00
2f4e7edee5
It makes no sense that clients had to worry about whether or not KSyms were loaded.
216 lines
5.4 KiB
C++
216 lines
5.4 KiB
C++
/*
|
|
* Really really *really* Q&D malloc() and free() implementations
|
|
* just to get going. Don't ever let anyone see this shit. :^)
|
|
*/
|
|
|
|
#include <AK/Types.h>
|
|
#include <Kernel/kmalloc.h>
|
|
#include <Kernel/StdLib.h>
|
|
#include <Kernel/i386.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <AK/Assertions.h>
|
|
|
|
#define SANITIZE_KMALLOC
|
|
|
|
struct [[gnu::packed]] allocation_t {
|
|
size_t start;
|
|
size_t nchunk;
|
|
};
|
|
|
|
#define CHUNK_SIZE 32
|
|
#define POOL_SIZE (1024 * 1024)
|
|
|
|
#define ETERNAL_BASE_PHYSICAL 0x100000
|
|
#define ETERNAL_RANGE_SIZE 0x100000
|
|
|
|
#define BASE_PHYSICAL 0x200000
|
|
#define RANGE_SIZE 0x100000
|
|
|
|
static byte alloc_map[POOL_SIZE / CHUNK_SIZE / 8];
|
|
|
|
volatile size_t sum_alloc = 0;
|
|
volatile size_t sum_free = POOL_SIZE;
|
|
volatile size_t kmalloc_sum_eternal = 0;
|
|
|
|
dword g_kmalloc_call_count;
|
|
dword g_kfree_call_count;
|
|
bool g_dump_kmalloc_stacks;
|
|
|
|
static byte* s_next_eternal_ptr;
|
|
static byte* s_end_of_eternal_range;
|
|
|
|
bool is_kmalloc_address(const void* ptr)
|
|
{
|
|
if (ptr >= (byte*)ETERNAL_BASE_PHYSICAL && ptr < s_next_eternal_ptr)
|
|
return true;
|
|
return (size_t)ptr >= BASE_PHYSICAL && (size_t)ptr <= (BASE_PHYSICAL + POOL_SIZE);
|
|
}
|
|
|
|
void kmalloc_init()
|
|
{
|
|
memset(&alloc_map, 0, sizeof(alloc_map));
|
|
memset((void *)BASE_PHYSICAL, 0, POOL_SIZE);
|
|
|
|
kmalloc_sum_eternal = 0;
|
|
sum_alloc = 0;
|
|
sum_free = POOL_SIZE;
|
|
|
|
s_next_eternal_ptr = (byte*)ETERNAL_BASE_PHYSICAL;
|
|
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
|
|
}
|
|
|
|
void* kmalloc_eternal(size_t size)
|
|
{
|
|
void* ptr = s_next_eternal_ptr;
|
|
s_next_eternal_ptr += size;
|
|
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
|
|
kmalloc_sum_eternal += size;
|
|
return ptr;
|
|
}
|
|
|
|
void* kmalloc_aligned(size_t size, size_t alignment)
|
|
{
|
|
void* ptr = kmalloc(size + alignment + sizeof(void*));
|
|
size_t max_addr = (size_t)ptr + alignment;
|
|
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
|
|
((void**)aligned_ptr)[-1] = ptr;
|
|
return aligned_ptr;
|
|
}
|
|
|
|
void kfree_aligned(void* ptr)
|
|
{
|
|
kfree(((void**)ptr)[-1]);
|
|
}
|
|
|
|
void* kmalloc_page_aligned(size_t size)
|
|
{
|
|
void* ptr = kmalloc_aligned(size, PAGE_SIZE);
|
|
size_t d = (size_t)ptr;
|
|
ASSERT((d & PAGE_MASK) == d);
|
|
return ptr;
|
|
}
|
|
|
|
void* kmalloc_impl(size_t size)
|
|
{
|
|
InterruptDisabler disabler;
|
|
++g_kmalloc_call_count;
|
|
|
|
if (g_dump_kmalloc_stacks && ksyms_ready) {
|
|
dbgprintf("kmalloc(%u)\n", size);
|
|
dump_backtrace();
|
|
}
|
|
|
|
// We need space for the allocation_t structure at the head of the block.
|
|
size_t real_size = size + sizeof(allocation_t);
|
|
|
|
if (sum_free < real_size) {
|
|
dump_backtrace();
|
|
kprintf("%s(%u) kmalloc(): PANIC! Out of memory (sucks, dude)\nsum_free=%u, real_size=%u\n", current->process().name().characters(), current->pid(), sum_free, real_size);
|
|
hang();
|
|
}
|
|
|
|
size_t chunks_needed = real_size / CHUNK_SIZE;
|
|
if (real_size % CHUNK_SIZE)
|
|
++chunks_needed;
|
|
|
|
size_t chunks_here = 0;
|
|
size_t first_chunk = 0;
|
|
|
|
for (size_t i = 0; i < (POOL_SIZE / CHUNK_SIZE / 8); ++i) {
|
|
if (alloc_map[i] == 0xff) {
|
|
// Skip over completely full bucket.
|
|
chunks_here = 0;
|
|
continue;
|
|
}
|
|
// FIXME: This scan can be optimized further with LZCNT.
|
|
for (size_t j = 0; j < 8; ++j) {
|
|
if (!(alloc_map[i] & (1<<j))) {
|
|
if (chunks_here == 0) {
|
|
// Mark where potential allocation starts.
|
|
first_chunk = i * 8 + j;
|
|
}
|
|
|
|
++chunks_here;
|
|
|
|
if (chunks_here == chunks_needed) {
|
|
auto* a = (allocation_t *)(BASE_PHYSICAL + (first_chunk * CHUNK_SIZE));
|
|
byte *ptr = (byte *)a;
|
|
ptr += sizeof(allocation_t);
|
|
a->nchunk = chunks_needed;
|
|
a->start = first_chunk;
|
|
|
|
for (size_t k = first_chunk; k < (first_chunk + chunks_needed); ++k) {
|
|
alloc_map[k / 8] |= 1 << (k % 8);
|
|
}
|
|
|
|
sum_alloc += a->nchunk * CHUNK_SIZE;
|
|
sum_free -= a->nchunk * CHUNK_SIZE;
|
|
#ifdef SANITIZE_KMALLOC
|
|
memset(ptr, 0xbb, (a->nchunk * CHUNK_SIZE) - sizeof(allocation_t));
|
|
#endif
|
|
return ptr;
|
|
}
|
|
} else {
|
|
// This is in use, so restart chunks_here counter.
|
|
chunks_here = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
kprintf("%s(%u) kmalloc(): PANIC! Out of memory (no suitable block for size %u)\n", current->process().name().characters(), current->pid(), size);
|
|
dump_backtrace();
|
|
hang();
|
|
}
|
|
|
|
void kfree(void *ptr)
|
|
{
|
|
if (!ptr)
|
|
return;
|
|
|
|
InterruptDisabler disabler;
|
|
++g_kfree_call_count;
|
|
|
|
auto* a = (allocation_t*)((((byte*)ptr) - sizeof(allocation_t)));
|
|
|
|
for (size_t k = a->start; k < (a->start + a->nchunk); ++k)
|
|
alloc_map[k / 8] &= ~(1 << (k % 8));
|
|
|
|
sum_alloc -= a->nchunk * CHUNK_SIZE;
|
|
sum_free += a->nchunk * CHUNK_SIZE;
|
|
|
|
#ifdef SANITIZE_KMALLOC
|
|
memset(a, 0xaa, a->nchunk * CHUNK_SIZE);
|
|
#endif
|
|
}
|
|
|
|
void* operator new(size_t size)
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void* operator new[](size_t size)
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void operator delete(void* ptr)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete[](void* ptr)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete(void* ptr, size_t)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete[](void* ptr, size_t)
|
|
{
|
|
return kfree(ptr);
|
|
}
|