ladybird/Kernel/IOWindow.cpp
Pankaj Raghav 83b87a5ade Kernel: Add bar_address_mask to mask the last 4 bits of a BAR address
Create a bar_address_mask constant to mask the last 4 bits of a BAR
address instead of hand coding the mask all over the kernel.
2023-04-24 21:41:54 +02:00

265 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/PCI/Definitions.h>
#include <Kernel/IOWindow.h>
namespace Kernel {
#if ARCH(X86_64)
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_io_space(IOAddress address, u64 space_length)
{
VERIFY(!Checked<u64>::addition_would_overflow(address.get(), space_length));
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(address.get(), space_length)));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
}
IOWindow::IOWindow(NonnullOwnPtr<IOAddressData> io_range)
: m_space_type(SpaceType::IO)
, m_io_range(move(io_range))
{
}
#endif
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset, u64 space_length)
{
#if ARCH(X86_64)
if (m_space_type == SpaceType::IO) {
VERIFY(m_io_range);
if (Checked<u64>::addition_would_overflow(m_io_range->address(), space_length))
return Error::from_errno(EOVERFLOW);
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(as_io_address().offset(offset).get(), space_length)));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
}
#endif
VERIFY(space_type() == SpaceType::Memory);
VERIFY(m_memory_mapped_range);
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
return Error::from_errno(EOVERFLOW);
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
return Error::from_errno(EOVERFLOW);
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(m_memory_mapped_range->paddr.offset(offset), space_length, Memory::Region::Access::ReadWrite));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
}
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset)
{
#if ARCH(X86_64)
if (m_space_type == SpaceType::IO) {
VERIFY(m_io_range);
VERIFY(m_io_range->space_length() >= offset);
return create_from_io_window_with_offset(offset, m_io_range->space_length() - offset);
}
#endif
VERIFY(space_type() == SpaceType::Memory);
VERIFY(m_memory_mapped_range);
VERIFY(m_memory_mapped_range->length >= offset);
return create_from_io_window_with_offset(offset, m_memory_mapped_range->length - offset);
}
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
{
u64 pci_bar_value = PCI::get_BAR(pci_device_identifier, pci_bar);
auto pci_bar_space_type = PCI::get_BAR_space_type(pci_bar_value);
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace) {
// FIXME: In theory, BAR5 cannot be assigned to 64 bit as it is the last one...
// however, there might be 64 bit BAR5 for real bare metal hardware, so remove this
// if it makes a problem.
if (pci_bar == PCI::HeaderType0BaseRegister::BAR5) {
return Error::from_errno(EINVAL);
}
u64 next_pci_bar_value = PCI::get_BAR(pci_device_identifier, static_cast<PCI::HeaderType0BaseRegister>(to_underlying(pci_bar) + 1));
pci_bar_value |= next_pci_bar_value << 32;
}
auto pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
if (pci_bar_space_size < space_length)
return Error::from_errno(EIO);
if (pci_bar_space_type == PCI::BARSpaceType::IOSpace) {
#if ARCH(X86_64)
if (Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
return Error::from_errno(EOVERFLOW);
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData((pci_bar_value & 0xfffffffc), space_length)));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
#else
// Note: For non-x86 platforms, IO PCI BARs are simply not useable.
return Error::from_errno(ENOTSUP);
#endif
}
if (pci_bar_space_type == PCI::BARSpaceType::Memory32BitSpace && Checked<u32>::addition_would_overflow(pci_bar_value, space_length))
return Error::from_errno(EOVERFLOW);
if (pci_bar_space_type == PCI::BARSpaceType::Memory16BitSpace && Checked<u16>::addition_would_overflow(pci_bar_value, space_length))
return Error::from_errno(EOVERFLOW);
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace && Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
return Error::from_errno(EOVERFLOW);
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(PhysicalAddress(pci_bar_value & PCI::bar_address_mask), space_length, Memory::Region::Access::ReadWrite));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
}
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar)
{
u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
return create_for_pci_device_bar(pci_device_identifier, pci_bar, pci_bar_space_size);
}
IOWindow::IOWindow(NonnullOwnPtr<Memory::TypedMapping<u8 volatile>> memory_mapped_range)
: m_space_type(SpaceType::Memory)
, m_memory_mapped_range(move(memory_mapped_range))
{
}
IOWindow::~IOWindow() = default;
bool IOWindow::is_access_aligned(u64 offset, size_t byte_size_access) const
{
return (offset % byte_size_access) == 0;
}
bool IOWindow::is_access_in_range(u64 offset, size_t byte_size_access) const
{
if (Checked<u64>::addition_would_overflow(offset, byte_size_access))
return false;
#if ARCH(X86_64)
if (m_space_type == SpaceType::IO) {
VERIFY(m_io_range);
VERIFY(!Checked<u64>::addition_would_overflow(m_io_range->address(), m_io_range->space_length()));
// To understand how we treat IO address space with the corresponding calculation, the Intel Software Developer manual
// helps us to understand the layout of the IO address space -
//
// Intel® 64 and IA-32 Architectures Software Developers Manual, Volume 1: Basic Architecture, 16.3 I/O ADDRESS SPACE, page 16-1 wrote:
// Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port.
// In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space.
// Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle.
// Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...).
// The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more
// extra bus cycle must be used.
return (m_io_range->address() + m_io_range->space_length()) >= (offset + byte_size_access);
}
#endif
VERIFY(space_type() == SpaceType::Memory);
VERIFY(m_memory_mapped_range);
VERIFY(!Checked<u64>::addition_would_overflow(m_memory_mapped_range->offset, m_memory_mapped_range->length));
return (m_memory_mapped_range->offset + m_memory_mapped_range->length) >= (offset + byte_size_access);
}
u8 IOWindow::read8(u64 offset)
{
VERIFY(is_access_in_range(offset, sizeof(u8)));
u8 data { 0 };
in<u8>(offset, data);
return data;
}
u16 IOWindow::read16(u64 offset)
{
// Note: Although it might be OK to allow unaligned access on regular memory,
// for memory mapped IO access, it should always be considered a bug.
// The same goes for port mapped IO access, because in x86 unaligned access to ports
// is possible but there's a performance penalty.
VERIFY(is_access_in_range(offset, sizeof(u16)));
VERIFY(is_access_aligned(offset, sizeof(u16)));
u16 data { 0 };
in<u16>(offset, data);
return data;
}
u32 IOWindow::read32(u64 offset)
{
// Note: Although it might be OK to allow unaligned access on regular memory,
// for memory mapped IO access, it should always be considered a bug.
// The same goes for port mapped IO access, because in x86 unaligned access to ports
// is possible but there's a performance penalty.
VERIFY(is_access_in_range(offset, sizeof(u32)));
VERIFY(is_access_aligned(offset, sizeof(u32)));
u32 data { 0 };
in<u32>(offset, data);
return data;
}
void IOWindow::write8(u64 offset, u8 data)
{
VERIFY(is_access_in_range(offset, sizeof(u8)));
out<u8>(offset, data);
}
void IOWindow::write16(u64 offset, u16 data)
{
// Note: Although it might be OK to allow unaligned access on regular memory,
// for memory mapped IO access, it should always be considered a bug.
// The same goes for port mapped IO access, because in x86 unaligned access to ports
// is possible but there's a performance penalty.
VERIFY(is_access_in_range(offset, sizeof(u16)));
VERIFY(is_access_aligned(offset, sizeof(u16)));
out<u16>(offset, data);
}
void IOWindow::write32(u64 offset, u32 data)
{
// Note: Although it might be OK to allow unaligned access on regular memory,
// for memory mapped IO access, it should always be considered a bug.
// The same goes for port mapped IO access, because in x86 unaligned access to ports
// is possible but there's a performance penalty.
VERIFY(is_access_in_range(offset, sizeof(u32)));
VERIFY(is_access_aligned(offset, sizeof(u32)));
out<u32>(offset, data);
}
void IOWindow::write32_unaligned(u64 offset, u32 data)
{
// Note: We only verify that we access IO in the expected range.
// Note: for port mapped IO access, because in x86 unaligned access to ports
// is possible but there's a performance penalty, we can still allow that to happen.
// However, it should be noted that most cases should not use unaligned access
// to hardware IO, so this is a valid case in emulators or hypervisors only.
// Note: Using this for memory mapped IO will fail for unaligned access, because
// there's no valid use case for it (yet).
VERIFY(space_type() != SpaceType::Memory);
VERIFY(is_access_in_range(offset, sizeof(u32)));
out<u32>(offset, data);
}
u32 IOWindow::read32_unaligned(u64 offset)
{
// Note: We only verify that we access IO in the expected range.
// Note: for port mapped IO access, because in x86 unaligned access to ports
// is possible but there's a performance penalty, we can still allow that to happen.
// However, it should be noted that most cases should not use unaligned access
// to hardware IO, so this is a valid case in emulators or hypervisors only.
// Note: Using this for memory mapped IO will fail for unaligned access, because
// there's no valid use case for it (yet).
VERIFY(space_type() != SpaceType::Memory);
VERIFY(is_access_in_range(offset, sizeof(u32)));
u32 data { 0 };
in<u32>(offset, data);
return data;
}
PhysicalAddress IOWindow::as_physical_memory_address() const
{
VERIFY(space_type() == SpaceType::Memory);
VERIFY(m_memory_mapped_range);
return m_memory_mapped_range->paddr;
}
u8 volatile* IOWindow::as_memory_address_pointer()
{
VERIFY(space_type() == SpaceType::Memory);
VERIFY(m_memory_mapped_range);
return m_memory_mapped_range->ptr();
}
#if ARCH(X86_64)
IOAddress IOWindow::as_io_address() const
{
VERIFY(space_type() == SpaceType::IO);
VERIFY(m_io_range);
return IOAddress(m_io_range->address());
}
#endif
}